
Technische Universität Dresden
Fakultät Elektrotechnik und Informationstechnik
Institut für Akustik und Sprachkommunikation

Diplomarbeit

Prosodisch-phonetische
Segmentierung und Annotierung
von deutschen bzw. englischen

Sprachkorpora

Michael Hofmann
mh21@gmx.net

8. März 2006

Verantwortlicher Hochschullehrer: Prof. Dr. R. Hoffmann
Betreuer: Dipl.-Ing. Oliver Jokisch

mailto:mh21@gmx.net


Technische Universität Dresden

Fakultät Elektrotechnik und Informationstechnik

Aufgabenstellung für die Diplomarbeit

für Herrn Michael Hofmann

Thema

Prosodisch-phonetische Segmentierung und Annotierung von deutschen bzw. 
englischen Sprachkorpora

Zielsetzung:
Die Sprachsynthesequalität wird stark durch die zur Verfügung stehenden 
Sprachdatenbasen bestimmt. Sowohl bei der Bausteinauswahl in der Korpussynthese als 
auch für Training bzw. gezielte Generierung von Prosodieverläufen werden umfangreiche, 
prosodisch und phonetisch annotierte Sprachkorpora benötigt. Die Prozesse der 
Segmentierung und Annotierung werden aus Aufwandsgründen zunehmend automatisiert, 
wobei eine phonetische Annotierung (Laute, Lautgrenzen, ggf. Akzente) heutiger Stand der 
Technik ist. Ansätze zur prosodischen Annotierung scheinen bisher weniger robust zu sein.
Im Rahmen des EU-Forschungsprojektes Technology and Corpora for Speech to Speech 
Translation (TC-STAR) arbeitet die TU Dresden an entsprechend annotierten 
Sprachdatenbasen in UK English. Die Diplomarbeit soll vorhandene Segmentierungs- und 
Annotierungsalgorithmen (auf phonetischer Ebene) evaluieren bzw. anpassen, in einem Tool 
integrieren und die prosodische Analyse ergänzen. Referenzweise soll das Tool auch mit 
deutschen Sprachdaten der TU Dresden getestet werden.
Folgende Teilaufgaben sind im Rahmen der Diplomarbeit vorgesehen:

1. Literaturrecherche zu sogenannten Phoneme Labellers bzw. prosodischen Annotierern
2. Analyse der TC-STAR-Spezifikation und Grobkonzeption eines Label Tools
3. Evaluierung verschiedener Label Tools bzw. Daten für UK English bzw. Deutsch, z. B.:

a) Phoneme Labeller G. Strecha,
b) LAIP Phoneme Labeller (COST 258, Lausanne),
c) Fujisakiparameterbestimmung (Mixdorff, Kruschke) als Korrelat zu pot. Akzenten,
d) Testung der Phrasierungs- bzw. Wortakzentmarkierung von Siemens CT.

4. Implementierung ausgewählter Algorithmen und Ergänzung von Analysemerkmalen:
I Anpassung der Laut- bzw. Pitch Mark-Annotierung für UK English
II einfache prosodische Markierung (gemäß Spezifikation TC-STAR) für UK English
III Prosodische Zusatzmerkmale soweit möglich (z. B. Emotionsklassen, etc.) 

5. Evaluation des integrierten Tool gegen manuelle Referenzdaten (English, Deutsch)
6. Dokumentation 

Betreuer: Dipl.-Ing. O. Jokisch
Ausgehändigt am: 16.07.2005
Einzureichen bis: 15.01.2006

Prof. Dr.-Ing. M. Liese Prof. Dr.-Ing. habil. R. Hoffmann
Vorsitzender des verantwortlicher Hochschullehrer
Prüfungsausschusses



Selbständigkeitserklärung

Hiermit erkläre ich, dass ich die von mir am heutigen Tage eingereichte Diplom-
arbeit zum Thema

Prosodisch-phonetische Segmentierung und Annotierung von deutschen bzw.
englischen Sprachkorpora

selbständig verfasst und keine anderen als die angegebenen Quellen und Hilfs-
mittel benutzt sowie Zitate kenntlich gemacht habe.

Dresden, den 8. März 2006



Dresden University of Technology
Department of Electrical Engineering and Information Technology
Laboratory of Acoustics and Speech Communication

Diplomarbeit

Prosodic and Phonetic
Segmentation and Annotation of

German and English Speech
Corpora

Michael Hofmann
mh21@gmx.net

March 8, 2006

Supervisor: Prof. Dr. R. Hoffmann
Faculty Advisor: Dipl.-Ing. Oliver Jokisch

mailto:mh21@gmx.net


Abstract

With the development of advanced methods for speech synthesis and recognition
and the availability of cheap processing power and storage solutions, the use of
large speech corpora gains increasing consideration.

The elaborate annotation with phonetic, prosodic and linguistic features of
such corpora can not be done manually and has to be supported by automatic
means. Although the results of computer based annotation methods are still in-
ferior to the ones obtained from the manual labeling by human experts, they can
nevertheless significantly reduce the processing time and amount of correction
necessary.

This thesis presents an annotation framework that combines a modular and
easily extensible structure with the ability to process large amounts of data
fully automatically. It implements basic reoccuring functionality like automatic
wave file and phone set conversations, data storage and multi-level annotation
management to ease the burden on the developer of annotation algorithms.

All necessary modules for the forced phoneme alignment of UK English voices
are implemented, as are annotation modules for pitchmark determination from
audio and electroglottograph signals, extraction of f0 contours, Fujisaki param-
eter calculation, word accent and phrase break level estimation, external lexicon
lookups and others.

The used algorithms are tested and their performance is evaluated. The tests
show that the results of the framework are suitable for the automatic annotation
of large corpora. They nevertheless still require an human expert for quality
control, parameter tuning and manual correction of the obtained results.
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1. Introduction

“There was once upon a time an old goat who had seven little kids, and loved
them . . . ” is the beginning of another well known fairy tail by the Grimm Broth-
ers [Gri89]. The capability of the one reading to fully captivate the attention of
little kids decides over the success of the story.

Now, automatic speech synthesis has still a long way to go until a computer
has the necessary proficiency to generate speech able to achieve these effects.
Nevertheless, automatic speech processing is improving steadily and gaining
increasing acceptance in consumer devices and communication systems.

With the advancing development of computer and storage solutions, the use
of very large databases in speech synthesis and recognition becomes feasible.
Alternative approaches to natural sounding speech synthesis like corpus-based
methods need large speech corpora that have to be extensively annotated. Be-
cause of the sheer amount, this work can not be done manually and has to be
supported by automatic means. Although computer based annotation may not
fulfill the accuracy requirements for such a task, it can significantly reduce the
processing time and amount of correction necessary.

The automatic speech annotation system presented in this thesis tries to sim-
plify and automate most of the tasks required for the initial processing of a
corpus. It implements functionality like automatic wave file and phone set con-
versations, data storage and multi-level annotation management while providing
a modular framework for phoneme-level, prosodic and linguistic annotation al-
gorithms.

The remaining sections of this chapter give an introduction into the funda-
mentals of speech production and prosody modeling with the Fujisaki model. In
chapter 2, necessary mathematical and algorithmic methods for signal process-
ing and feature optimization are provided. The developed annotation framework
together with the implemented algorithms is presented in chapter 3 and the an-
notation results are evaluated in chapter 4. Finally, chapter 5 summarizes the
achieved results and outlines some prospects for future research.

The appendix contains extensive documentation of the developed framework.
It provides information about the file formats used for data storage and com-
munication with the various external programs, many examples that illustrate
the use of the framework for the fully automatic annotation of a newly recorded
corpus and documentation of additional programs developed to visualize anno-
tation results.

1



1. Introduction

1.1. Speech Production
Speech is used to convey information between humans, both linguistic and non-
linguistic. The linguistic part includes semantic information represented by
the segmental structure of vowels and consonants as well as suprasegmental
features like pitch and duration. Non-linguistic features give information about
the attitudinal and emotional state, the social and geographic background, the
sex and the age of a speaker [Sai92].

Speech can be divided in the following units [Mar97]:

Phonetic features form the parameter set that can describe differences be-
tween phonemes of a language. They may be defined in terms of articula-
tory, acoustic and perceptual properties.

Segments are short stretches of speech in the range of 30 to 300 ms that have
relatively constant features.

Phrases are sequences of words that are separated by prosodic means.
Utterances describe portions of speech that are confined by silence and have

no pauses in-between, often corresponding to written sentences.
Speaking turns are the successive parts in a conversation that are spoken by a

single person.

A complex collaboration of several speech organs is necessary to produce
speech (figure 1.1):

• The respiratory system consisting of the lung and the trachea supplies the
airflow that is later on converted to sound energy.

• Depending on the voice quality, the vocal folds of the larynx are open,
closed or vibrating, modulating the air flow.

• The source signal created by the glottis is shaped by the vocal tract to
produce distinctive sounds. Vowels and some consonants are formed by the
resonance frequencies of the vocal tract whereas consonants like fricatives,
stops and affricates are caused by obstruction of the air flow [LC97].

The process of transforming the air flow into audible sounds at the larynx is
called phonation. Depending on the movements of the vocal folds, the following
different types are distinguished [Mar97]:

Nil phonation is caused by stationary vocal folds. Glottal stops are produced if
the glottis is opened after it was blocking to airstream completely, whereas
a narrow opening or high flow speeds cause turbulent airflow that can be
heard as glottal fricatives or breath.

Whisper intonation is created by non-vibrating vocal folds that have very low
tension and are only partially opened.

Modal voiced phonation is regarded as the neutral mode of phonation. Ten-
sion of the vocal folds is at an average, and the glottis alternates between
fully opened and closed states.
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Figure 1.1: Midsagittal view of the vocal tract [VHH98] and sections of the
human larynx [Fuj05]

Creak phonation or vocal fry is characterized by stiffened vocal folds with low
tension that vibrate at low frequencies.

Breathy voice is a mixed phonation type comparable to voiced whisper. The
vocal folds close only incompletely, allowing stationary airflow that causes
audible friction noise.

Harsh voice is caused by high tension of all the muscles in the entire vocal
tract, creating an irregular cycle duration and amplitude.

Falsetto phonation is due to relatively thin stretched vocal folds, resulting in
a higher generated frequency.

The signal generated by the vocal folds is the basis for speech synthesis based
on algorithms like Pitch-Synchronous Overlap and Add (PSOLA) that require
marked pitch periods of the input units. Methods like Linear Prediction Cod-
ing (LPC) can be used to recreate the source signal from a recorded audio signal,
making it possible to determine pitch markers with autocorrelation-based tech-
niques.

Another possible way to obtain the source signal would be the measurement
of the glottis opening as it is proportional to the acoustic pressure of the air
flow. Although high speed and stroboscope camera recordings of the vocal cords
have been made as early as in the 1940s [HF38], it still remains a rather invasive
and uncomfortable method that can’t be used for large-scale recordings.

To overcome these problems, various methods have been proposed that mea-
sure the glottal opening in an indirect way from the outside of the neck:

• Electromagnetic sensors are based on the different permittivity of air and
body tissue [Pel04, BHN02]. During voiced segments of speech, the com-
pound relative permittivity oscillates at the same frequency as the glottis
which can be observed by capacitive sensors. The needed equipment how-
ever is not readily available and expensive.
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Laryngograph

RF

AM Detector EGG

Neck
Glottis

Electrodes

Figure 1.2: EGG device (after [CK85]) and electrical field created by the elec-
trodes [TSB+00]

• Electroglottography (EGG) uses the electrical impedance to measure the
opening of the glottis [KLKP00, Rot90, MPK01].

1.1.1. Electroglottograph

An Electroglottograph (figure 1.2) is connected to two electrodes that are at-
tached to both sides of the thyroid cartilage with an elastic band. Sometimes
a third electrode is used to gain an impedance reference. This attachment does
not affect the speakers ability to talk, breathe and swallow therefore making it
possible to wear for a prolonged period of time. A radio frequency sinus genera-
tor in the range of 300 kHz to 5ṀHz supplies a current of less than 10 mA to the
electrodes, capacitively bypassing the skin layer [Mar97]. Additional conductive
paste may also be used.

The RF signal is modulated by the varying impedance of the vibrating vocal
folds. Because admittance is proportional to the conducting area, the electrical
resistance of the larynx changes with the glottis size and maximum resistance
can be observed with a totally open glottis. The RF frequency part is removed
in the AM detector and the digitized demodulated result stored in a computer.

Although this methods can give excellent results, [KC86] warns that “the
reader is cautioned that we do not consider the EGG signal as a cure-all for
solving pitch estimation problems.” Various error sources complicate the work
with an Electroglottograph [Eng03]:

• The plate electrodes have to be positioned correctly in relation to the
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t1 t2 t3 t4 t5 t6

t

t

AL

AS

Figure 1.3: Glottis, vocal fold position, air flow AS and EGG signal AL [Hes83]:
(1) glottis closes (2) glottis is closed completely (3) glottis is closed maximally
(4) glottis starts to open (5) glottis is completely open (6) glottis is maximally
open (after [Eng03])

larynx independently of the anatomy of the speaker.
• Hairiness, draining of the conductive paste, individual anatomy and move-

ment of the larynx during speaking can cause limited or lost contact be-
tween the electrodes resulting in a signal that has a low Signal to Noise
Ratio (SNR) or is even incomplete.

• EGG signal quality and shape depend on individual and sex.
• Speakers change the position of their larynx while speaking, causing a

variation in the measured impedance and therefore a DC shift of the EGG
signal that needs to be removed.

• The recorded signal is not identical with the wanted source signal and has
to be post-processed to retrieve pitch markers.

• The EGG signal is distorted by random noise caused by the RF part of
the AM detector and voice-synchronous noise because of tissue vibration
[Rot92].

1.1.2. Source Signal

Figure 1.3 shows the glottis, the vocal folds, the resulting air stream and a
simplified EGG signal that is proportional to the admittance of the glottis.

The Glottal Closure Instant (GCI) is defined here as the moment when the
vocal folds start to close and is characterized by a steep increase in the EGG
signal that nearly coincides with the maximum in the differentiated EGG. The
instant of glottal opening occurs very close to the minimum of the differentiated
EGG [KC86]. The distance between a GCI and the maximum is about 0.2 ms±
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Figure 1.4: Glottal width, EGG and audio signal for a male (M) and a female
voice (F): (1) glottis opens (2) glottis is opened maximally (3) glottis is closed
(4) glottis opens again (5) glottis is completely open [BLM83]
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Figure 1.5: Fujisaki model (after [Fuj05])

0.1 ms, whereas the difference of the glottal opening and the minimum is slightly
more variable with about 0.3 ms ± 0.2 ms. Similar values are mentioned in
[Mic99] with differences between GCIs and maximums of 0 ms to 0.3 ms (figure
1.4).

1.2. Fujisaki Model
The determination of pitchmark positions allows the calculation of base fre-
quency contours. The well-known Fujisaki model for parametrizing f0 contours
was developed in 1984 by Fujisaki and Hirose (figure 1.5). In contrast to other
approaches to the description of base frequency contours, it tries to incorporate
physical as well as physiological explanations.

The Fujisaki model is based on the physiological structure of the larynx
[Fuj05]. Two different mechanisms for the movement of the thyroid cartilage
correspond to the two available degrees of freedom in the generation of base
frequency contours (figure 1.6): global phrase commands (impulse functions)

6



1. Introduction

Figure 1.6: The different degrees of freedom for the movement of the thyroid
cartilage (after [Fuj05])

and local accent commands (step functions). Together with the asymptotic
minimum of the base frequency Fb the logarithmic base frequency contour is
calculated (equation 1.1).

The model was originally developed for Japanese and has since been adapted
to a wide range of languages, for example English [FO95], Swedish [FLM93] and
German [Mix97].

lnF0(t) = lnFb +
I∑

i=1

ApiGp(t− T0i) +
J∑

j=1

Aaj[Ga(t− T1j)−Ga(t− T2j)]

(1.1)

Gp(t) =

{
α2t exp(−αt), t ≥ 0

0, t < 0
(1.2)

Ga(t) =

{
min[1− (1 + βt) exp(−βt), γ], t ≥ 0

0, t < 0
(1.3)

Phrase component Gp(t) (equation 1.2) represents the basic contour over a
complete phrase. An impulse signal that marks the phrase start at T0i creates
the impulse response Gp(t). The time constant α determines the decay of the
contour and is set to about 1.0/s. It is regarded as constant for the whole
utterance. The magnitude of the impulse response Api defines the intensity of
the phrase, i. e. the change in the logarithm of F0.

Accent component Ga(t) (equation 1.3) describes local accents for syllables
and words. A stepwise function with an onset time of T1j and an end time of T2j
causes a step response from the accent control unit. The constant β determines
the shape of the signal and is about 20.0/s. Its also considered constant for
the utterance. The upper bound γ (normally γ = 0.9) limits the time until
the ceiling value is reached, the constant Aaj determines the magnitude of the
accent commands.
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Fb contains the baseline value of the fundamental frequency, i. e. the asymp-
totic value in the absence of any accent or phrase commands. The parameters
Ap, T0 and α for the phrase control unit and Aa, T1, T2 and β for the accent
control unit are called Fujisaki parameters.
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2. Signal Processing and
Optimization Methods

The following sections provide some mathematical and algorithmic background
to the used signal processing and optimization methods. If you are familiar with
the here discussed algorithms, you may want to skip this chapter.

2.1. Signal Processing

2.1.1. Windowing

Windowing is the process of cutting time frames of a certain length out of a
longer signal. To avoid artifacts while doing short-time signal processing on
these frames, window functions are employed to smooth the signal both in the
time and spectral domain. They are used in the calculation of a variety of
parameters, e. g. in the Fast Fourier Transform (FFT) or in the determination
of power contours. The most common windows besides the rectangular window
are the Hann, Hamming, Bartlett and Blackman windows (table 2.1).

Discrete window functions for the window length N can be calculated by
substituting τ = 1

2
(N − 1) and t = k− 1

2
N in the equations. Use τ = 1

2
N to get

cyclic instead of symmetric windows as required by short-time analysis.

2.1.2. Preemphasis

To compensate the frequency spectrum of the human voice that has much of
its energy in the higher bands, a preemphasis filter is used. It is mainly em-
ployed in the calculation of signal characteristics like power contours to get more
meaningful results. The most common realization is

y(k) = y(k + 1)− py(k) (2.1)

with its transfer function

G(z) = 1− pz−1 (2.2)
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Name Function

Rectangular window

h(t) =

{
1, |t| < τ

0, |t| ≥ τ

1

0 τ−τ x

h(t)

Hann window

h(t) =

{
1
2
(1 + cos(π t

τ
), |t| < τ

0, |t| ≥ τ

1

0 τ−τ x

h(t)

Hamming window

h(t) =

{
0.54 + 0.46 cos(π t

τ
), |t| < τ

0, |t| ≥ τ

1

0 τ−τ x

h(t)

Bartlett window

h(t) =

{
1−

∣∣ t
τ

∣∣ , |t| < τ

0, |t| ≥ τ

1

0 τ−τ x

h(t)

Blackman window

h(t) =


0.42 + 0.5 cos(π

t

τ
)

+ 0.08 cos(2π
t

τ
),

|t| < τ

0, |t| ≥ τ

1

0 τ−τ x

h(t)

Table 2.1: Window functions
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Figure 2.1: Phreemphasis filter amplitude response for different values of p

This results in an amplitude response of

A(Ω) = |G(ej Ω)| =
√

1 + p2 − 2p ∗ cos(Ω) (2.3)
A(0) = 1− p (2.4)
A(π) = 1 + p (2.5)

Usual values for the coefficient p are 0.9 to 1.0 (figure 2.1).

2.1.3. Linear Regression

Regression analysis allows to calculate the coefficients for a specific function so
that a certain number of data points is modeled optimally. More specifically,
linear regression analysis tries to fit the equation

y(x) = mx+ n (2.6)

to N data points (xi, yi) so that the sum of the squares R of the distances
beween yi and y(xi) is minimized:

R =
N∑

i=1

(yi − y(xi))
2 (2.7)

With the correlations

Sxx =
N∑

i=1

x2
i −

1

N

(
N∑

i=1

xi

)2

Sxy =
N∑

i=1

xiyi −
1

N

N∑
i=1

xi

N∑
i=1

yi (2.8)

the coefficients m and n can be calculated by

m =
Sxx

Sxy

n =
1

N

N∑
i=1

yi −
m

N

N∑
i=1

xi (2.9)
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The variation explained by the regression equation is expressed by the coefficient
of determination r2

r2 =
S2

xy

(SxxSyy)2
(2.10)

The so determined coefficients can be used to analyze the general trend of a given
sequence of data points or to evaluate assumptions about the data distribution.

2.1.4. Wavelet Transform

Wavelet analysis overcomes some of the limitations of the Short Term Fourier
Transform (STFT) and Fourier Transform by allowing to choose different basis
functions and flexible window lengths that depend on the analyzed frequency
band.

The continuous wavelet transform is defined by the coefficients γ(s, τ) [Val04]

γ(s, τ) =

∫
f(t)ψ∗s,τ (t)dt (2.11)

for the analyzed function f(t), the basis functions ψ∗s,τ (t), the scale s and the
translation τ . Each basis function can be derived from a mother wavelet ψ(t)

ψs,τ (t) =
1√
s
ψ

(
t− τ

s

)
(2.12)

These so called wavelets need to fulfill the admissibility condition∫
|Ψ(ω)|2

|ω|
dω < +∞ (2.13)

with Ψ(ω) being the Fourier transform of ψ(t) which means that Ψ(ω) vanishes
at the zero frequency

|Ψ(ω)|2
∣∣
ω=0

= 0 (2.14)

and wavelets have to be a wave∫
ψ(t)dt = 0 (2.15)

A discrete wavelet can be defined by

ψj,n(t) =
1√
sj
0

ψ

(
t− nτ0s

j
0

sj
0

)
(2.16)
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Figure 2.2: Quadratic (n = 1) and cubic (n = 2) spline function θ(x) and
derivative wavelet function ψ(x)

with the integers j and n, the dilation step s0 and the translation factor τ . We
further assume s0 = 2 and τ0 = 1 which gives dyadic sampling of the time and
frequency axis.

A family of spline-based wavelets that can be used for edge detection is pre-
sented in [MZ92] (figure 2.2). The Fourier transform Θ(ω) of the spline primitive
θ(x) is defined by

Θ(ω) =

(
sin(ω/4)

ω/4

)2n+2

(2.17)

with the derivative of the primitive used as wavelet that is given by its Fourier
transform Ψ(ω)

Ψ(ω) =iω

(
sin(ω/4)

ω/4

)2n+2

(2.18)

and the Fourier transform Φ(ω) of the scaling function φ(x)

Φ(ω) =iω

(
sin(ω/2)

ω/2

)2n+1

(2.19)

The Mallat algorithm [Hof98, Dau91] can be used to calculate the desired
wavelet coefficients with a multiresolution pyramid that is specified by the re-
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Figure 2.3: Multiresolution pyramid for the spline-based wavelet

cursive equations for the coefficient calculation

λj+1(n) =
∑
m

h(m− 2n)λj(m) (2.20)

γj+1(n) =
∑
m

g(m− 2n)λj(m) (2.21)

and for the signal reconstruction by

λj−1(n) =
∑
m

k(m− 2n)γj(m) +
∑
m

h(m− 2n)λj(m) (2.22)

The calculated coefficients γj(n) are the high pass part of a multiresolution
pyramid (figure 2.3) and correspond to the wavelet coefficients of scale 2j, the
coefficients λj(n) are the low pass result. The signal f(n) can be regarded as
the result of a (imaginary) initial filter step and equals λ0(n). The scaling filter
h(n), the wavelet filter g(n) and the reconstruction filter k(n) coefficients are
specified by their Fourier transforms [MZ92]

H(ω) = eiω/2(cos(ω/2))2n+1 (2.23)

G(ω) = 4ieiω/2 sin(ω/2) (2.24)

K(ω) =
1− |H(ω)|2

G(ω)
(2.25)

The calculation of the filter coefficients is shown in appendix D.3. Variable
filters Hj(ω), Gj(ω) and Kj(ω) for each calculation step that have 2j − 1 zeros
inserted between the filter coefficients may be used instead of the downsampling
and upsampling steps in the multiresolution pyramid, the resulting algorithm
for wavelet transform and reconstruction can be seen in listing 2.1.

The normalization coefficients pj are required to achieve the same amplitude
independent on the scale for a step edge (figure 2.4).
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for (j = 0; j <= J; ++j) {
Gfilter = InsertZeros (Gmother, (1 << j) - 1)
Hfilter = InsertZeros (Hmother, (1 << j) - 1)
Gamma[j] = 1 / p[j] * Convolve (Lambda, Gfilter)
Lambda = Convolve (Lambda, Hfilter)

}

// Process wavelet coefficients ...

for (j = J; j >= 0; --j) {
Kfilter = InsertZeros (Kmother, (1 << j) - 1)
Hfilter = InsertZeros (Hmother, (1 << j) - 1)
Lambda = Convolve (Lambda, Hfilter) +

p[j] * Convolve (Gamma[j], Kfilter)
}

Listing 2.1: Mallat algorithm (after [MZ92])

pj

j n = 1 n = 2

1 2.0000 2.0000
2 1.5000 1.2500
3 1.3750 1.1328
4 1.3438 1.1079
5 1.3359 1.1020
6 1.3340 1.1005
7 1.3335 1.1001
8 1.3333 1.1000
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Figure 2.4: Normalization coefficients pj for the quadratic (n = 1) and cubic
(n = 2) spline wavelets and the resulting step response for a cubic wavelet filter
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Initialization

Parent selection Recombination

Mutation

Fitness evaluation

Survivor selection

Figure 2.5: Typical Structure of an EA

2.2. Evolutionary Optimization
Evolutionary Algorithms (EAs) are ways to solve a computational problem by
using methods that are similar to known mechanisms of evolution. They are
typically employed if a direct connection between the parameters to optimize
and the results of the optimization problem can not easily be made. For an
extensive and humorous introduction, see [HB01]. Several different algorithms
are available, among them

• Genetic Algorithms (GAs),
• Evolutionary Programming (EP),
• Evolution Strategies (ES),
• Genetic Programming (GP).

The typical structure of such an algorithm can be seen in figure 2.5. An EA
operates on populations of individuals represented by a genome that encodes
parameters for the problem to optimize. Each genome has a certain fitness and
can be mutated or recombined with other genomes to create offsprings.

Two ways exist to represent the possible solutions of an EA: GAs use a
separate encoding in chromosome-like structures to represent the parameters,
whereas ESs do not demand a special description. For such genomes consisting
of boolean or floating point genes of a certain range, the basic operations de-
scribed in the next sections need to be defined to be able to solve Evolutionary
Optimization (EO) problems [Kos01].
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Figure 2.6: Crossover with two crossover points

2.2.1. Initialization

The first population is initialized with individuals chosen randomly from the
available parameter range or set to a specific prototype.

Fixed All genes are initialized to fixed values.
Random The gene value is selected randomly from the valid range for the given

parameter.

2.2.2. Parent Selection

From all available individuals, a subpopulation is selected for offspring produc-
tion.

Fitness The best individuals according to their fitness score are selected.
Tournament The selection is obtained in rounds. Two individuals at a time are

chosen from the population and the one with the higher fitness is promoted
to the next round. The winner of the last round is selected.

2.2.3. Recombination

The parents’ genomes are recombined to generate the offspring population.

Average The parents’ genes are averaged sequentially with each other and the
resulting value is used for the offspring. When applied to boolean values,
the result will be random if the original values were different.

Crossover One or more random points on the genome are picked and the re-
sulting portions exchanged between the parents (figure 2.6).

2.2.4. Mutation

The individuals of the offspring population are mutated, i. e. their genomes are
altered.

Boolean The new boolean values is determined by chance.
Random A random offset within a certain range from a uniform distribution is

added to the previous value.
Gaussian A Gaussian distributed offset is added to the previous value.
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Figure 2.7: Pareto Front

2.2.5. Fitness Evaluation

All available individuals are rated regarding the fitness for the particular prob-
lem to solve. While it is easy to rate the outcome of a problem that contains
only one objective, most real-world problems contain more than one goal. Opti-
mizing such a problem causes an infinite number of optimal solutions, generally
known as Pareto-optimal solutions. This set of solutions is also called the Pareto
Front.

The concept of Pareto Dominance describes relationships between different
solutions. One solution dominates another one, if exceeding it at least concern-
ing a single parameter while no other parameter is worse. In figure 2.7, solutions
in the dark gray rectangle (bottom left) are dominated by B. But B itself is dom-
inated by the rectangle upper right. Solutions F or C are neither dominated
by B nor dominate B, although they are not optimal, as well. Solutions like A,
along the Pareto Front, are optimal. To approximate the Pareto Front, differ-
ent algorithms like Strength Pareto Evolutionary Algorithm (SPEA) have been
developed [Zit99].

2.2.6. Survivor Selection

Based on the fitness values, the survivors of both parent and offspring population
are selected.

Kill worst The individuals with the worst scores are removed.
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Figure 2.8: (µ+ λ) Evolutionary Strategy (after [Kos01])

2.2.7. Strategies

Strategies define the exact sequence and parameters of then mentioned modules.

(µ+ λ) All µ individuals from the parent population are used to create λ off-
springs. Afterwards, the worst λ individuals from both parent and off-
spring population are removed (figure 2.8).

2.3. Artificial Neural Networks
Artificial Neural Networks (ANNs) are information processing dynamic systems
that consist of a large number of simple units that influence each other [Zel94].

One important property of ANNs is their ability to learn unattended from
training samples without the need of explicit programming. Additionally, the
output quality of an ANN degrades gracefully with increased input noise.

Neural networks consist of:

• Units (neurons). they have the following constituents:

– Activation state aj(t). It specifies the level of activation of the neuron
j.

– Bias (threshold) θj

– Activation function fact. Calculates the new activation value aj(t+1)
from the old activation aj(t), the weighted output of the preceding
units netj(t) and the bias of the neuron θj.

– output function fout. The output functions determine the output of
the neurons from the activation aj(t).

• Connections (links) between the units. The weights wij for a connection
from unit i to unit j and the output from the preceding neurons result in
the net input for the succeeding neuron.

• Learning algorithm. Determines the way the ANN learns to produce the
correct output for a given input by adjusting the weights of the links and
the thresholds of the units.
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Figure 2.9: Example for a three-layer fully connected ANN and its connection
or weight matrix

Depending on the task different structures for a ANN are possible. A com-
monly used type is the Multilayer Feedforward Neural Network (MFN) in which
neurons are arranged in multiple layers. Units of different layers are connected
by unidirectional links in the direction from the input to the output neurons,
units within one layer are not connected to each other.

Connections that skip layers are called shortcut connections. A fully con-
nected network has all the possible connections between adjacent layers (figure
2.9).

2.3.1. Transfer Functions

Often the activation function fact is combined with the output function fout

to the transfer function f . Sometimes, this function is again called activation
function.

Transfer functions can be divided into several groups:

• Linear transfer functions are only useful for single-layer networks. All
networks of higher order can be reduced to such a network.

• The step transfer function is mainly used in binary perceptrons. The
input value is compared with an internal threshold and switches the binary
output.

• Sigmoid transfer functions are the most commonly used transfer func-
tions. Two typical examples are the log sigmoid transfer function and the
function tanh(x) (figure 2.10).

2.3.2. Multilayer Feedforward Neural Networks

The ability of the network to realize a given function is mainly determined by
the number of layers of trainable links. The following figures are based on the
use of a step transfer function, but also apply analogously to other transfer
functions.
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Figure 2.10: flog(x) log sigmoid and ftanh(x) hyperbolic tangent sigmoid transfer
function

Figure 2.11 shows a single-layer network and a function that can be realized.
This classic example requires linear separability of the request function with a
hyperplane. Other functions like the XOR problem are not representable with
this structure.

A two-layer neural network like the one in figure 2.12 can reproduce every log-
ical combination of half-planes, i. e. convex polygon structures. The displayed
function of an AND combination can be realized by a binary step transfer func-
tion at the output neuron that has a threshold slightly lower than the sum of
the weights of the connections to this neuron.

The three-layer network (figure 2.13) can realize every possible functions
through the logical combination of convex polygons. MFNs of higher order
with more layers have no additional capabilities.

2.3.3. Training of a Neural Network

The training of ANNs is done in three steps and requires two or three disjunct
groups of patterns:

1. The training pattern set serves for the supervised training of the network
until convergence of the output error is reached. The most commonly used
learning algorithm is backpropagation.

2. To select the best possible network state, the validation pattern set is used.
These patterns are not included in the network training and determine
when to stop the training to avoid overfitting (figure 2.14).

3. The result of the training is calculated with the help of the test pattern
set.

Often test and validation sets are combined into only one set of patterns that
fulfills both tasks, although this will result in a network that is not independent
of its training process. The initial weights of the network are set to random
values in the range of -1 to 1.
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Figure 2.11: Area that is accepted by a single-layer ANN (after [Zel94])
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Figure 2.13: Area that is accepted by a three-layer ANN
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Figure 2.14: Simplified error during the training of an ANN

2.4. Dynamic Time Warping
A slightly modified Dynamic Time Warping (DTW) [Hof98] algorithm is used
to align sequences of discrete elements. The goal is to find the optimal match
of the two sequences, i. e. the alignment with the least number of insertions,
deletions and substitutions.

More mathematically, given the feature vector Xn for the n-th element, we
are trying to find the path

u(n) = (u1(n), u2(n)) (2.26)

so that the similarity measure D is minimized:

D∗(Xref, Xusr) = min
u(n)

[
D
(
Xref, Xuser, u(n)

)]
(2.27)

(2.28)

With the accumulated distance function d(Xref,i, Xuser,j) between the i-th ref-
erence element and the j-th user element, Dynamic Programming (DP) results
in the iteratively calculated minimum distance

D∗(0, 0) = 0 (2.29)

D∗(i, 0) = D∗(i− 1, 0) + d(Xref,i, ∗) (i = 1, . . . , I) (2.30)

D∗(0, j) = D∗(0, j − 1) + d(∗, Xuser,j) (j = 1, . . . , J) (2.31)
D∗(i, j) = min

[
D∗(i− 1, j − 1) + d(Xref,i, Xuser,j),

D∗(i− 1, j) + d(Xref,i, ∗),
D∗(i, j − 1) + d(∗, Xuser,j)

]
(i = 1, . . . , I)

(j = 1, . . . , J)
(2.32)

and it is possible to find the minimizing path u∗(n) by backtracking through
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Figure 2.15: DTW for the label sequence of Your favorite TV show. One label
is replaced, two labels exist only in the reference utterance at the bottom and
one only in the user utterance to the left.

the distance matrix

u∗(N) = (I, J) (2.33)
u∗(n) = arg min

[
D∗(u∗1(n+ 1)− 1, u∗2(n+ 1)− 1),

D∗(u∗1(n+ 1)− 1, u∗2(n+ 1)),

D∗(u∗1(n+ 1), u∗2(n+ 1)− 1)
] (n = 1, . . . , N − 1) (2.34)

The special distance function values d(Xref,i, ∗) and d(∗, Xuser,j) denote the costs
for deletion and insertion of elements respectively. Figure 2.15 shows an example
of the sequence alignment.
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3. An Automatic Annotation
System

3.1. Requirements
A mostly automatic annotation system that is supposed to interoperate with
external tools and their file and data formats and that can be used with arbitrary
annotation tasks needs to fulfill all of the following requirements:

Platform independence is necessary to use the provided toolset on various
current and future operating systems. It should be possible to

• copy the complete tool tree between different operating systems without
or with only small changes,

• use one unique tree for shared network access,
• transfer the generated data files between platforms with different word

size, byte order and encoding settings.

File format conversion must be provided to convert between the different
formats used by external tools. Especially it must be possible to

• convert wave files between different file types, sample rates, channel num-
bers and sample sizes,

• transform label files between different formats and phone sets,
• read and write special formats used to store pitchmarks, f0 contours and

Fujisaki parameters etc.

Unattended operation simplifies operation on large corpora. The system
must

• fail gracefully in the event of an unexpected condition,
• provide meaningful error messages about the cause and code position of

errors,
• be highly configurable and scriptable to the required task.

Easy maintenance is essential. It has to

• allow the easy correction of bugs,
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• have all public interfaces and building blocks as well as the internal code
structures documented,

• reuse available functionality internally as well as where provided by exter-
nal programs to minimize redundancy,

• be structured in a modular way to allow extension with additional external
programs and new modules.

Manual intervention should be possible to correct automatically calculated
features. Especially

• phoneme-level labeling,
• syllabic structure and
• prosodic features

should allow easy modification.

3.2. Prerequisites
Automatic prosodic labeling of a corpus requires phone, syllable, word and sen-
tence level features to be already present in the corpus annotation.

To automatically derive these features, forced alignment with the output from
a Text to Speech (TTS) system should used. This requires only the text that
was presented to the speaker and the recorded signal to be available.

The following steps are therefore necessary to automatically calculate the
basic phone level information:

• Grapheme Phoneme Conversion (GPC) of the text prompt
• Synthesis of the phonemes to get a synthesized speech signal
• Forced alignment of the synthesized and natural speech signal and deriva-

tion of the phoneme segmentation of the recorded signal

Furthermore, additional structural information available from the GPC and
external dictionaries should be used to derive syllable, word and sentence level
features.

3.3. System Structure
Figure 3.1 gives an overview of the proposed system structure. Each box rep-
resents a module slot that can be filled by a selectable implementation for that
particular task. Shown are the required input and output files for each block.

Grapheme Phoneme Conversion The term GPC as used here comprises all
steps necessary to convert the input text and convert it into phonemes.
The module has to cope with multiple sentences, various text encodings
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Figure 3.1: System structure

(especially umlauts), should generate additional structural information
on syllable, word and sentence level and may provide predicted prosodic
features like base frequency.

Synthesizer The synthesizer processes the phoneme and prosodic information
from the GPC and produces audible output.

Aligner Preprocessor This step prepares the generated phonemes and the syn-
thetic reference signal for the phoneme alignment.

Phoneme Aligner Now forced alignment between the reference and recorded
signal is performed. Figure 3.2 shows the basic structure of a phoneme
aligner that uses Dynamic Time Warping (DTW) for matching.
Certain features are calculated from the two signals which are then com-
pared with DTW. Afterwards the labels of the reference signal are mapped
to the most likely positions in the recorded signal.

Annotators The mapped label positions, the recorded signal and the linguistic
data generated throughout the alignment process are used to automati-
cally annotate the database with additional features.

3.4. Grapheme Phoneme Conversion
A GPC consists of the following steps [BTC02]:

Tokenization The input text is decomposed into tokens and utterance breaks
are detected. Sentence breaks and abbreviations have to be distinguished.

Token to word conversation The tokens are analyzed and converted to words.
Special care has to be taken for numbers, which may represent quantities,
ordinals, dates or money amounts. Abbreviations and single letters are
expanded.
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Figure 3.2: Phoneme Aligner structure (after [Str00])

POS tagging Each token is assigned a Part of Speech (POS) tag. Often HMM-
based taggers are used that assign the tags based on the tag probability
distribution for a word and ngram models.

Phrase break estimation Phrase breaks are determined that split the utter-
ance into prosodic phrases. Different approaches exist that utilize Classi-
fication and Regression Trees (CARTs) or probabilistic models for phrase
breaks depending on the neighboring words.

Lexicon lookup The lexicon provides pronunciation and phoneme information
about a word. If a word can not be found, generic letter-to-sound rules
are used to derive the phonemes.

Duration prediction The segmental duration for each phoneme is calculated.
Different methods like CARTs or models depending on e. g. minimal and
inherent durations can be used.

3.4.1. LaipTTS

The LaipTTS [KZ96] GPC was developed at the University of Lausanne and
contains modules for French and German. Because of the unavailability of the
source code, only basic support for German as provided by the underlying Java
classes is supported. The GPC contains only incomplete handling of out-of-
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vocabulary words and has no interface to obtain further linguistic information.

3.4.2. Festival

The Festival speech synthesis system [BTC02] provides multilingual synthesis
and is developed at the Centre for Speech Technology Research (CSTR) at the
University of Edinburgh. It is released under a non-copyleft license similar to
the 3-clause BSD license.

It features voices for American and British English as well as Spanish and can
be extended by third-party modules to gain support for additional languages,
e. g. Dutch with the NeXTeNS project [KM02] and German with IMS Festi-
val [Möh99]. Integrated are also several speech utilities that can be used to
perform signal processing operations, training of language models or grammar
generation. All synthesis modules can be used independently which allows the
extraction of the results after the different steps of the GPC.

Although the system is written in C++, an integrated Scheme interpreter
allows it to be programmed and extended during runtime. Scheme is a list-
based language from the Lisp family and therefore a bit unusual-looking to
somebody used to languages like Pascal or C. See [Sit04] for an introduction.

Festival is invoked with

sh> festival [--script FILE]

and presents a Scheme command line interface. Now it is possible to obtain
help

festival> (help)
festival> (doc utt.save)

to select a voice for synthesis

festival> (voice_rab_diphone)

and to synthesize text with

festival> (SayText "Hi there")

Listing 3.1 shows a simplified example program that is used to synthesize
multiple sentences from standard input and store them in one utterance file. It
can be called with

sh> festival --script festivalwrap.scm voice_rab_diphone \
temp.est target.est

The first parameter is evaluated as a Scheme command (line 21) and used to
set the required voice. The next command hooks the default Festival synthesis
command chain to use output-utterance (line 15) to output each utterance
to the temporary file name and append the contents to the result file (line 8).
This file contains all the results from Festival’s synthesis modules except the
synthesized waveform.
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(define (copy-file source-file target-file)
(set! buffer (fread 8192 source-file))
(if buffer

(begin
5 (fwrite buffer target-file)

(copy source-file target-file))))

(define (append-file source-name target-name)
(set! target (fopen target-name "a"))

10 (set! source (fopen source-name "r"))
(copy-file source target)
(fclose source)
(fclose target))

15 (define (output-utterance utt)
"(output-utterance UTT)
Output segment information in raw Festival format."
(utt.save utt (cadr argv))
(append-file (cadr argv) (caddr argv)))

20

((eval (car argv)))
(set! tts_hooks (list utt.synth output-utterance))
(tts_file "-")

Listing 3.1: Festival wrapper scheme file to synthesize input from stdin and to
store it in Festival utterances

3.4.3. Alternatives

Other GPC programs are available that are not included in the framework at the
moment. The DRESS system developed at the Dresden University of Technol-
ogy provides multilingual speech synthesis for e. g. German, Italian and Chinese.
For each language, several different speakers are available. It includes a GPC
module as well diphone-based synthesis and can provide linguistic information
together with the phonetic data. GPC for German is also provided by HADIFIX
[PSP+92].

3.5. Synthesis
The synthesis module has to convert the phonemes into audible speech. De-
pending on the method used, this consists of steps like unit selection, segment
concatenation and signal-based modification of prosodic parameters.
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n n/N

b 152 1.72 %
p 175 1.98 %
d 277 3.14 %
t 528 5.99 %
g 73 0.82 %
k 280 3.18 %
tS 65 0.73 %
dZ 53 0.60 %
plosives 1603 18.20 %
total 8804

Table 3.1: Frequency of plosives and affricates in the rob200 corpus

Mbrola The most widely used synthesis package is Mbrola [DPP+96]. It is
freely available for non-commercial purposes and is employed by the aforemen-
tioned HADIFIX, NeXTeNS and LaipTTS GPCs. Mbrola is based on a con-
catenative diphone engine and produces speech with a piecewise linear pitch
contour. It uses an algorithm of the PSOLA family (Multi Band Resynthe-
sis OverLap Add) for the concatenation that allows the smoothing of spectral
discontinuities. Voices are available for a multitude of languages ranging from
French to Indonesian.

3.6. Aligner Preprocessor
To prepare the generated phonemes and the synthesized signal for the forced
alignment, an additional step provides the possibility of modifications before
both reach the aligner. At the moment it is only used to prepare the labeling
of plosives for alignment by splitting them into pause and burst.

Plosive Splitter Most available GPC systems do not generate a phoneme se-
quence that has plosives split into pause and burst. Nevertheless it would be
attractive to have separate pause and burst labels for the forced alignment avail-
able to ease the burden on the human expert who has to post-process the au-
tomatic labeling results. Table 3.1 shows the frequency of occurence of plosives
and affricates for the rob200 corpus.

To determine the boundary between pause and burst, several possible prop-
erties of the signal in the time domain or in the frequency domain could be
evaluated. Because of the good signal quality and high SNR of synthesized
speech, a straight forward approach in the time domain that is based on the
energy signal is used. It will be shown that the presented algorithm provides
more than adequate results for the given task (figure 3.3).
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Figure 3.3: Time and frequency domain properties for plosives of an example
utterance

For nearly all plosives the start of the burst correlates with a steep rise in
the energy signal. The following parameters are used for the calculation of the
short-time energy:

• Hamming window,
• window length of 10 ms,
• preemphesis of 0.97,
• frame interval of 1 ms.

For a given plosive segment, the longest monotonous increase in the energy
signal from tB to tE is found. Two different approaches for the derivation of the
pause-burst boundary tb have been evaluated (figure 3.4):

• Relative position

tb = tδ = tB + δ(tE − tB)

• Maximum slope

tb = ts = arg max (∆E(t))

3.7. Phoneme Aligner
Three different aligners are supported. All use forced alignment with different
kinds of Dynamic Time Warping (DTW) to align a reference signal with the
input signal and derive the phoneme segmentation.
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Figure 3.4: Calculating the boundary between pause and burst for plosive seg-
ments

3.7.1. Supported Phoneme Aligner Programs

Institute of Informatics Problems, Minsk This experimental aligner is de-
veloped by Andrej Davydov at the Institute of Informatics Problems, Minsk
[Dav04]. Its main purpose is the alignment of phoneme segments for voice
cloning [LT04] and is not directed at the alignment of longer phrases. Never-
theless it uses an interesting modified DTW algorithm and is therefore included
in the comparison.

University of Bonn The dsp_dtwalign aligner was developed by Karlheinz
Stöber at the IKP of the University of Bonn [Stö97]. It is a command line-base
executable compiled for Cygwin/Windows [Cyg05], but can be successfully used
under i386-based Linux operating systems with Wine [Win05].

Dresden University of Technology This aligner was developed by Guntrum
Strecha at the Dresden University of Technology during his masters thesis
[Str00]. It is highly configurable and has a user defined feature set. The aligner
is used here with the recommended parameters from the provided evolution-
ary optimized settings file. The input signal is normalized, preemphasized and
processed to derive the following features:

• Root Mean Square (RMS) energy of the signal and two derivatives
• zero crossing density and two derivatives
• 30 Mel Frequency Cepstrum (MFC) coefficients and one derivative

3.7.2. Performance Evaluation

There exist two major kinds of labeling errors:

• precision errors, i. e. how close do the predicted labeling positions match
the ones of a human labeler
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• transcription errors such as insertions, deletions and replacements of la-
bels.

Both error types need to be evaluated separately to get meaningful results.
In the following equations, N denotes the total number of manually labeled
boundaries used for testing.

To estimate the precision of the aligner, the deviation of labels is rated by the
quality coefficient Qρ [Hus99]

Qρ =
nρ

N

where nρ is the number of labels that are less than ρms from the manually
labeled position. In following [Str00], further evaluation is done on the basis of
the quality coefficients Qρ for ρ = {10, 20, 30, 40, 50}.

The transcription error is calculated with the accuracy measure A [KWS97]

A =
N − S −D − I

N

with the number of substitutions S, insertions I and deletions D.

3.8. Linguistic Annotation

3.8.1. Label Merger

To be able to compare alignment results and to modify labels for the further
annotation process that have been manually corrected by a human expert, DTW
with the feature vector

Xn = {Nn}

with Nn being the name of the n-th label is performed. See appendix D.4 for
the default distance function used in the framework.

For simplicity the comparison is solely performed on the label level with the
names as parameters. It would also be possible to use additional features such
as duration although this is not pursued further here.

3.8.2. Syllables

Because most dictionaries used for synthesis have syllable boundaries that are
marked automatically and employed only for the stress determination of vowels,
it is necessary to provide means for correction using an external dictionary for
the target language. Because dictionaries differ in the phonetic description of
words, a fault-tolerant way of merging syllable boundaries is needed.
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Figure 3.5: Merging external syllable information for the word December : the
first realization is a recorded example, the second from an external dictionary

Similar to the approach for the integration of external labels, DTW is applied
to the label sequence. After corresponding phonemes have been identified, the
syllable boundaries are shifted to match the target syllable segmentation.

This process can be seen in figure 3.5. The first realization of the word
December stems from the Festival dictionary for British English and has wrong
syllable delimiters. Its labels have been manually corrected to match the actual
recorded signal. The second realization is taken from an external dictionary
with correct syllable segmentation. Step by step, the algorithm iterates over
the phonemes, shifting and adding syllable boundaries as necessary.

3.9. Prosodic Annotation
The Technology and Corpora for Speech to Speech Translation (TC-STAR)
project aims at producing speech corpora that can be used for building advanced
state-of-the-art TTS systems as well as for intralingual and interlingual research
on voice conversion and expressive speech [BHT+04]. It is going to provide high-
quality language resources for UK English, Spanish and Mandarin. The voices
are sampled at 96 kHz and with 24 bit precision and each voice is recorded in
several corpora: Novels and short stories are included as well as expressive
speech.
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The required volume of 10 h of speech per voice corresponds to about 90 000
running words that need to be extensively annotated. Because of the sheer
volume of data most of this task has to be performed automatically. The speech
data analyzed here is build from single sentences and short paragraphs read by
different male and female UK English voices. This corpus solely consists of
well-defined read speech and does not contain spontaneous utterances.

The TC-STAR project requires the following prosodic annotation [BHT+04]:

Two-level phrase break annotation with distinction between minor (interme-
diate intonational phrases) and major breaks (full intonational phrases).

Intonational prominence annotated using two levels: normal and emphatic.

Several different approaches for the annotation of these features are presented
in the following sections. The results can be found in chapter 4.

Besides for these features, no further research has been done to analyze other
prosodic characteristics such as loudness, tempo, rhythm and emotional state
as all of the used corpora consisted of planned speech.

For each prosodic feature, the possible values are divided into distinct classes
and a confusion matrix between the reference and recognized classes is calcu-
lated. The following definitions are used (similar to [BKK+98]):

• Number of classes

n

• Number of elements in the reference class i that are recognized as class j

Ni,j

• Number of elements in the reference class i

Ni =
n∑
j

Ni,j

• Recognition rate for class i

RRi =
Ni,i

Ni

• Overall recognition rate

RR =

∑n
i Ni,i∑n
i Ni

• Average recognition rate

RR =
1

n

n∑
i

RRi
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Figure 3.6: Fujisaki parameter example: As regards nitrogen levels, we would
need reliable statistics and data from the various Member States.

3.9.1. Rule-based Break Estimation

The Festival system predicts phrase breaks with two different methods: by
a CART or with a probabilistic model that is enabled for the American and
British English voices that come with Festival [BTC02]. It uses the probabili-
ties of breaks based on the POSs of the previous and following words of a break
combined with an ngram model of the break distribution to optimize the phras-
ing. These automatically determined breaks could correspond to the breaks
made by humans.

3.9.2. Derivation from Fujisaki Parameters

Automatically extracted Fujisaki parameters from the f0 contour [KL03] should
correspond to accents and phrase breaks sensed by a human listener (3.6). To
test this hypothesis, several assumptions are made:

• Fujisaki phrases correspond to phrases perceived by a listener,
• the strength of an accent is proportional to the Fujisaki accent amplitude

and the accent length,
• the observed accent strength may depend on the word length,
• an accent spanning multiple words may emphasize only the main or all

words,
• the accent strength is perceived relative to the strongest accent in the

phrase.

These lead to the following implementation for the derivation algorithm:
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1. The utterance is split into phrases according to Fujisaki phrase commands.
A phrase command within a word leads to a phrase starting with the next
word, as does a phrase command within silence.

2. The accents are assigned to words. Multiple accents for one word are
added. If only one word per accent is permitted, the accent area that falls
between the word limits has to be more than 50 %.

3. All accumulated accent scores are divided by the word length if requested.
4. The maximum accent per phrase is calculated.
5. A word is marked as accented if the accent score crosses a certain thresh-

old.

3.9.3. Neural Network Optimization

A different approach that uses more input data than only the Fujisaki parame-
ters can be implemented by machine learning techniques. A well known method
for supervised learning is the use of ANNs.

The network simulation is done by the well known Stuttgart Neural Net-
work Simulator (SNNS). It was developed by Andreas Zell and others at the
University of Stuttgart [Zel95] and forms the basis of Java Neural Network Sim-
ulator (JavaNNS), an interactive Java based simulation environment created at
the University of Tübingen [FHBZ02]. The annotation framework employs some
of the classes developed in the JavaNNS project to interface the SNNS kernel
for simulation.

Experience has shown that no determinate rule exist that can be used to find
the optimal network structure, number of hidden layers, transfer functions etc.
for a particular task [JH04]. The here employed neural network structure is
derived from similar networks used for pattern recognition and prediction and
has given good results for a variety of problems.

The structure chosen is a multilayer feed-forward network with a variable
number of neurons in the two hidden layers. The input unit number is equal to
the size of the feature set, and one output unit for the requested parameter is
used. All neurons are realized by a sigmoid activation function and are trained
with backpropagation.

The output value for each pattern is set to a value between zero and one,
depending on the number of classes for the training. The training pattern set
is grouped by category and patterns are duplicated as necessary to get groups
of equal strength.

A large number of input features for the prediction of prosodic parameters
have been proposed that model base frequency, duration, energy and linguistic
information on the syllable and word level [BBH+99], especially

• f0 onset, offset and linear regression coefficients,
• absolute and normalized duration,
• energy contour linear regression coefficients,

38



3. An Automatic Annotation System

• POS tags [BBH+00],
• rule-based boundary labels [BWN+98].

Based on these features, the here implemented solution is additionally based
on the following assumptions:

1. Only word-level features are used, as syllable-level features do not provide
additional performance according to [BBNW00].

2. A configurable context window provides the network with information of
previous and following words. The best window size has to be determined
by optimization.

3. If possible, both normalized and absolute values are provided. Although
normalized variables seem to serve intuitively better as network input, they
may be seriously outperformed by absolute values in some cases [BNB+01].

The following input fields are provided:

Duration Several different features describing the duration of the current word
are provided:

• Absolute word duration
• Normalized word duration as calculated from the mean phoneme du-

rations of the whole corpus
• Scale factor comparing absolute and normalized word durations

Linguistic information The output from the speech synthesis system is lever-
aged to provide information about POS tags and possible phrase structure:

• The POS calculated by the synthesis HMM tagger following the Penn
Treebank notation with 45 classes.

• A derived POS tag that uses only 16 simplified classes.
• Phrase break information from the probabilistic Festival tagger.

Base frequency and power contour The logarithmic f0 and power contours
are described with the following features (figure 3.7). They are calculated
for raw as well as for smoothed contours where applicable.

• First signal value Aon. For f0 contours, the first value of the first
voiced segment is used.

• Last signal value Aoff. For f0 contours, the last value of the last voiced
segment is used.

• Maximum and minimum value Amin and Amax.
• Mean value Amean, for f0 contours only voiced segments are included.
• Absolute and relative position of the maximum and minimum value
tmin and tmax.

• Linear regression coefficients m and n and residual sum of squares R
for the contour. For f0 contours, only voiced segments are considered.

Fujisaki parameters Analogous to the EO, the following input fields are calcu-
lated for Fujisaki parameters:
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Figure 3.7: Features used to describe base frequency and power contours

• Accumulated accent area (score) per word for all Fujisaki accent com-
mands.

• Phrase command amplitude if there is a phrase command in the
current word or in a possibly following silence.

• Maximum accent score per Fujisaki phrase as derived from the Fu-
jisaki phrase commands.

Structural information Certain additional positional and structural fields are
provided. Phrase segmentation for these features is obtained from the
phrase break annotation of the Festival synthesis.

• Number of syllables in the current word, current phrase and previous
phrase.

• Index of the current word in the phrase and utterance.
• Index of the first syllable of the current word in the phrase and ut-

terance.
• Start and end time of the current word and phrase.

3.10. Polarization
The phonation process leaves traces in the speech signal that make it possible to
determine the polarization of an audio signal required for pitchmark algorithms
based on inverse LPC filtering. The following algorithm can also be used to
determine the polarization of an EGG signal. It is based on the fact that the
negative Bernoulli pressure caused by the air flow modifies the speed of move-
ment of the vocal folds. The otherwise symmetric oscillation is shifted towards
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X = X - mean (X)
X = -accumulate (X)
X = highpass (X, 90)
max = 0
min = 0
for (j = scale (800); j <= scale (50); ++j) {

Gamma = transform (X, j)
maxmean = mean (maxima (Gamma, 1/800))
minmean = mean (minima (Gamma, 1/800))
max += mean (only (maxima (Gamma), > 0.5 * maxmean))
min += mean (only (minima (Gamma), < 0.5 * minmean))

}
score = (max + min) / (max - min)

Listing 3.2: Speech signal polarization determination

a faster closing movement that creates steeper transients in the EGG and source
signals. A signal is regarded to have positive polarization if the negative tran-
sients are stronger (e. g. the source signal, where the closing of the vocal folds
causes an abrupt reduction of the air stream) and to have negative polarization
with larger positive transients (e. g. an EGG signal that is proportional to the
admittance of the vocal folds which increases on closing).

The used algorithm is almost identical with the one described in [Eng03]
(listing 3.2):

1. The DC part of the signal is removed, creating a signal that is zero at the
beginning and the end after the next step.

2. The negative accumulated signal is calculated

xa(k) =
k−1∑
n=0

x(n)

3. An FFT high pass filter with 90 Hz cut-off frequency is used to remove
low-frequency noise caused by e. g. head movements.

4. The coefficients γj(k) of the cubic B-spline wavelet are calculated for cor-
responding scales j from 50 Hz to 800 Hz.

5. The averages of all local maxima and minima of the wavelet coefficients
for each scale are used as a threshold to calculate filtered averages without
low-amplitude extrema.

6. The filtered averages are accumulated for all scales, the polarity of the
sum determines the polarization of the signal.
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Figure 3.8: Comparison of two EGG signals of two different speakers. In contrast
to the right example, the left signal has no easily detectable GCIs with distinct
inflection points.

3.11. Pitchmark Extraction from EGG Signals
Pitchmarks are required to enable synthesis methods like PSOLA to manipulate
the base units in pitch and length. To concatenate different units, the pitch
periods additionally have to be marked in a consistent way to achieve smooth
transitions. Different methods for the placement of markers in a pitch period
are in use:

• Maximum or minimum peak in the audio signal
• Zero crossing preceding or following an extremum
• Maximum amplitude of the EGG signal
• Start of the glottal closure as observable in the EGG signal
• Maximum slope of the EGG signal

The selection of a suitable position is further complicated by the fact that
it should be determinable both from the EGG and audio signal. The analysis
in [Kot05] has shown that only the point of the beginning of glottal closure
(defined here as the GCI) in the EGG signal can be correlated to a time-domain
feature. GCIs marked in this manner and corrected for a nearly constant time
delay coincide with the most negative-going peak of the audio signal.

The GCI is easily observable in most EGG signals. It is characterized by
a sharp bend after a steady signal part that is followed by the steepest edge
in a period (figure 3.8). Because it may be impossible to detect the inflection
point at the GCI, the following algorithm (similar to the approach in [HI84])
extends the one developed by Toni Engel and Hans Kruschke [Eng03] and tries
to determine the position of the steepest slope as the GCI (listing 3.3):

1. The polarization of the signal is tested. Signals with positive polarization
are inverted.

2. An FFT band pass filter is used to remove low-frequency noise caused by
e. g. larynx movements and high-frequency noise from the detector circuit.

3. The resulting signal is normalized.
4. Offsets at the beginning and the end of the signal are removed by addition

of a linear function.
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X = X - linear (X(0), X(length))
X = bandpass (X, 40, 2000)
Gamma = 0
for (j = 0; j <= 8; ++j) {

Gamma += normalize (transform (X, j))
}
pitchmarks = threshold (maxima (Gamma, 1/800), 9 * 0.1)

Listing 3.3: Determination of GCIs from an EGG signal

fg = 500 Hz

fg = 1000 Hz

fg = 2000 Hz

fg = 4000 Hz

fg = 8000 Hz

fg = 16000 Hz
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Figure 3.9: FFT spectra of the EGG signals for two different speakers before
and after low pass filtering with different cutoff frequencies

5. The coefficients γj(k) of the cubic B-spline wavelet are calculated for scales
j from 0 to 8, normalized and accumulated.

6. The positions of the local maxima larger than a certain threshold corre-
spond to the GCIs.

3.11.1. Noise Filtering

Despite perfect recording conditions [Eng03], some speakers’ EGG signal may
exhibit a low SNR that complicates the pitchmark extraction. Low amplitude
thresholds for the EGG extraction will then result in noise being mistakenly
marked as pitchmarks, whereas high thresholds cause low-amplitude GCIs to
not be detected. Figure 3.9 shows the average FFT spectra for two recordings
of a male and a female speaker. Quite visible are the high frequency noise spikes,
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laura ian

fg/Hz SNR/dB |∆t|/ms nc nt ne SNR/dB |∆t|/ms

unfiltered 24 447 60 18 37
16000 29 0.031 447 60 18 42 0.014
8000 39 0.032 447 60 18 44 0.017
4000 40 0.039 446 61 18 46 0.033
2000 42 0.062 446 61 18 48 0.058
1000 44 0.095 446 61 19 49 0.136
500 47 0.105 450 57 21 50 0.225

Table 3.2: SNR, average pitchmark deviation, number of coinciding pitchmarks
nc, pitchmarks derived only from time-domain characteristics nt and from the
EGG signal ne for a low pass filtered EGG signal of a female speaker. The two
rightmost columns show SNR and deviation for an example of a male speaker.

Figure 3.10: Pitchmark extraction from an EGG signal without (black) and
with (gray) low pass filtering (fg = 500 Hz)

e. g. at 18 kHz, 28 kHz and 37 kHz for both recordings and the higher overall
noise level for the laura speaker.

An FFT low pass filter can be used to suppress these frequency ranges. For
different cutoff frequencies, table 3.2 shows the achievable SNRs of the two
speakers with and without filtering.

The filtering alters the signal shape and therefore influences the pitchmark
extraction. Figure 3.10 shows an example of the shift that is introduced for an
aggressive low pass filter with fg = 500 Hz. More moderate cutoff frequencies
cause much lower deviations as can be seen in table 3.2.

3.11.2. Combining Pitchmarks Algorithm

Physical properties of the phonation process inhibit the detection of pitchmarks
from the EGG signal in certain transitional states of the vocal tract. Weak
phonation as present during the beginning and the end of a vowel does not
cause the vocal folds to open completely, therefore making it hard or impossible
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to observe the abrupt decrease in impedance when the vocal folds start to close
again. Three examples of such problematic segments can be seen in the figures
3.11 to 3.13.

On the other hand, time-domain based pitchmark algorithms make assump-
tions about allowed pitch periods that create problems with e. g. laryngealiza-
tion [BBJK93]. To keep the advantages of both methods and to overcome some
of their problems, it would be favorable to merge EGG and time-domain derived
pitchmarks.

The following assumptions are made:

1. The time-domain pitchmarks coincide with the GCIs as observable in the
time-domain signal. This requires a derivation based on an algorithm like
inverse LPC filtering as implemented in [Eng03].

2. The steep decrease in impedance of the EGG signal marks the start of the
closing of the vocal folds and occurs before the actual GCI. This interval
td is considered nearly constant.

3. The distances between vocal folds and lips tv as well as lips and microphone
ta do not change significantly. The length of the vocal tract depends on
the age and sex of the speaker, the here used values were determined in
[FG99] for male and female speakers in the age of 18 to 25. The studio
settings are similar like the ones in [Eng03] with a distance between lips
and studio microphone of about 20 cm.

More formally, the interval between the i-th decrease in the EGG signal tE and
the GCI tG as observed in the time-domain signal can be described with

∆ti = tE,i − tG,i = ∆td,i + ∆tv,i + ∆ta,i (3.1)

and

∆td = (0.2± 0.1) ms (3.2)

∆tv =
(0.15± 0.01) m

343 m s−1
(3.3)

∆ta =
(0.21± 0.02) m

343 m s−1
(3.4)

which results in an average delay of

∆t = (1.25± 0.42) ms (3.5)

With those assumptions, these relations for the distance shift between EGG
and time-domain markers should also be true:

• The standard deviation of all distances between EGG and time-domain
markers should be lower than the one for the distances between time-
domain and the following EGG markers.

σ(tG,i − tE,i) < σ(tE,i − tG,i+1)
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Figure 3.11: EGG signal with reduced phonation and missing GCIs between
vowels (black pitchmarks extracted from the EGG signal, gray markers from
the audio signal)

Figure 3.12: EGG signal with reduced phonation and missing GCIs before a
vowel (black pitchmarks extracted from the EGG signal, gray markers from the
audio signal)

Figure 3.13: EGG signal with reduced phonation and missing GCIs after a vowel
(black pitchmarks extracted from the EGG signal, gray markers from the audio
signal)
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Figure 3.14: Example distribution of the distances between EGG and time-
domain markers and linear regression results for a female speaker depending on
the pitch interval T0

• For the relation between pitch interval and distance between EGG and
time-domain markers, the coefficient m and the determination of linear
regression analysis should be lower for the distances between EGG and
time-domain markers than for the ones between time-domain and the fol-
lowing EGG markers.

m(tG,i − tE,i) < m(tE,i − tG,i+1)

r2(tG,i − tE,i) < r2(tE,i − tG,i+1)

Figure 3.14 shows the distribution of such distances for an example utterance of
a female speaker where these relations are true. They can be used to determine
whether the given pitchmark data can be merged successfully.

The combination of the two pitchmark tracks is therefore done in three steps:

1. Validation of the above mentioned criteria that the pitchmarks are in the
right order and can be merged.

2. Determination of pitchmarks that have been detected from both the EGG
and audio signal.

3. Interpolation of new positions for pitchmarks that are only available from
either the EGG or audio signal.

The last step can either be done by the interpolation of the f0 contour in the
segment that is supposed to have voiced pitchmarks [FKLL04] or by the direct
calculation of pitchmark positions from the other track. This implementation
uses the latter approach to transfer pitchmarks from one track to another:
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Figure 3.15: Utterance structure (framed nodes can contain features)

• Pitchmarks that are not preceded or followed by another pitchmark that
can be considered adjacent (i. e. the distance is less than the maximum
pitch period) are copied to the other track with a shift that is equal to the
median shift of all pitchmarks that are available in both tracks.

• Pitchmarks that have either following or preceding adjacent pitchmarks
that lead to a pitchmark that is available in both tracks (i. e. pitchmarks
at the beginning or end of voiced sections) are copied with a shift equal
to the one of the pitchmark available in both tracks.

• Pitchmarks that have both following or preceding adjacent pitchmarks
that are linked to the other track get copied with a linearly interpolated
shift of the ones from the two linked pitchmarks.

External components of the delay could be isolated by the comparison of
the audio signal of the studio microphone with that of a headset microphone,
although this is not pursued further here.

3.12. Data Storage
The main storage format for the framework is derived from the utterance struc-
tures that are used by Festival [BTC02]. It allows easy storage of interconnected
data in different formats.

An utterance is a data structure that can hold information in one or more so
called relations (figure 3.15). A relation is a tree-like structure of items that
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Relation Description

Token The token sequence from the tokenizer. After token to word
conversation, each token contains the generated words and
punctuation marks as offsprings.

Word List of words as generated from the token to word conversation.
Each entry in this relation has children in the SylStructure
relation.

Phrase Words divided into phrases. Each item denotes a phrase and
has the words within it as leaf nodes.

SylStructure Contains all words and punctuation marks from the Token
relation. For a word, the daughters are its syllables which in
turn contain their segments.

Syllable List of all syllables in the utterance.
Segment Contains the phones for the utterance. All but the silences are

also in the SylStructure relation as children of the correspond-
ing syllable.

Target List of all segments that have predicted f0 values as daughters.

Table 3.3: Commonly used relations

Type Description

String S Text-based values like phoneme names as well as enumerated
values for e. g. POS

Integer I Boolean values and integral numbers
Double F Floating point values, e. g. the results from signal processing

operations

Table 3.4: Feature types

link to the actual content objects. This format is capable of both storing highly
interconnected knowledge about e. g. the syntactic structure of a text as well
as list data from signal processing operations like base frequency estimation in
one common structure.

The most important relations from Festival are shown in table 3.3. Figure
3.16 shows the contents of these relations for a sample utterance. More relations
that are related to the internal workings of Festival’s synthesis exist, see [BTC02]
for an exhaustive list.

The actual information in an utterance is contained in the so called features
that are available for content objects, relations and the utterance itself. The
possible feature types are shown in table 3.4, the most common features for the
relations given above in table 3.5.

See appendix C.3 for the description of a tool to explore Festival utterances.
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Figure 3.16: Example utterance (boxes denote relations)

Relation Feature Type Description

Token name S Token contents that has been stripped
from punctuation symbols

whitespace S Whitespace before the token
prepunctuation S Punctuation preceding the token, e. g.

quotation marks
punc S Punctuation succeeding the token, e. g.

question marks or commas
Word name S Word name

pos S POS class of this word
phr_pos S Simplified POS class
pbreak S phrase break type after this word: NB de-

notes no break, B or BB intermediate or
full phrase break

blevel I phrase break level
Phrase name S phrase break type
Segment name S Phoneme name

end F End time of the segment
Target f0 F F0 value

pos F time of the f0 value

Table 3.5: Commonly used features
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4.1. Used Databases
Several male and female speakers for the TC-STAR project have been used to
obtain the following results. An additional external database was employed to
estimate the applicability of an algorithm for inter-corpus prediction. The kate
corpus from a female speaker consists of 1197 short phrases that contain mainly
names, dates, numbers and web addresses. Manual phoneme labeling exist for
40 sentences with a total of 726 phonemes.

4.2. Plosive Splitter
A comparison of the results of the plosive splitter for different settings can be
seen in figure 4.1. The used data consisted of 40 sentences extracted from the
kate corpus that were synthesized with the Festival rab voice. The pause-burst
boundaries of all plosives were manually corrected to be within a 1 ms distance
before the burst.

Various values for the parameter δ as well as positioning based on the point
of the steepest slope were used. The results show that different parameters may
be appropriate. If the labeling task requires low overall errors, parameter values
like δ = 0.5 may be appropriate although this will cause more than 25 % of all
labels to be shifted towards the burst section. That amount can be decreased
with δ = {0.0, 0.3} which in turn give slightly higher overall errors. A good
compromise denotes the selection of the position of the steepest slope.

These results should be readily applicable to other voices or synthesis meth-
ods. The main error source are plosives that have no noticable pause before
the burst or no burst at all. It may be appropriate to exclude certain plosives
and affricates like b from the splitter or to investigate methods of automatic
identification for such irregular plosives.

A multi-step algorithm could increase the precision of the determined position
of the boundary. A first analysis with a larger window for the power calculation
would identify the rough position, followed by passes with reduced window sizes
to find the exact position.
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Figure 4.1: Histogram and plot of the pause-burst boundary errors for plosives
and affricates of the segmentally labeled part of the kate corpus: relative position
with δ = {0, 0.3, 0.5, 0.7} and (S)teepest slope

4.3. Phoneme Aligner

4.3.1. Precision Errors

To estimate the precision errors that occur with the mentioned aligners, the
segmentally labeled sentences from the UK English kate corpus are used.

A plain comparison of the three available phoneme aligners is shown in figure
4.2. Displayed are the percentage of automatically detected phoneme boundaries
that deviate less than |∆t| = {10, 20, 30, 40, 50}ms from the manually labeled
boundaries and the error distribution. Negative error values denote automatic
labels that have been placed earlier than the corresponding manual ones.

The aligner of Guntram Strecha has about 47 % of all labels within a 10 ms
range from the correct position, followed by the aligner of Karlheinz Stöber.
Oddly enough the plot of the relative cumulative frequency for the range from
−100 ms to 100 ms shows that for no aligner the curve crosses the 50 % mark at
a deviation of 0 ms.

Depending on the aligner, a certain shift seems to be necessary to equalize
the plot. This amounts to about 4 ms for Strecha’s aligner and 8 ms for the
one of Stöber. Although these errors may be caused by wrong labeling of the
synthesized reference as obtained from the speech synthesizer, it seems not clear
why such a systematic error would depend on the type of aligner used.
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Figure 4.2: Histogram and plot of the segmentation boundary errors for an
unshifted reference: (Str)echa, (Stö)ber, (D)avydov
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Figure 4.3: Histogram and plot of the boundary errors for a shifted reference:
(Str)echa 4 ms, (Stö)ber 8 ms, (D)avydov 10 ms
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Figure 4.4: Histogram and plot of the positive and negative errors for the aligner
of Guntram Strecha for labels shifted by 4 ms
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Figure 4.5: Histogram and plot of the positive and negative errors for the aligner
of Karlheinz Stöber for labels shifted by 8 ms
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To compensate for this difference, the labels for the reference signals are
shifted by the required amount and the alignment is performed again. The
results can be seen in figure 4.3. The errors improved considerably, especially for
the aligner of Karlheinz Stöber. The distribution plot shows that the remaining
differences between the aligners are not caused by translational effects anymore.

The figures 4.4 and 4.5 show the effect of the shifted labels on the error
distributions divided into negative and positive errors. There seem to be more
problems of labels places too late than too early. The delayed labels actually
improve these cases slightly, especially for Stöber’s aligner.

Further it is analyzed whether stretching of the synthesized signals improves
the alignment result. The duration of the phonemes from the GPC is scaled
and the changed sequence is used for synthesis. Table 4.1 shows the median
segmentation boundary errors that result for different scaling factors γ and
time shifts τ . The aligner of Karlheinz Stöber shows worse results for all scaling
factors, the one of Guntram Strecha has slight improvements for a scaling factor
of 1.3, only the aligner of Andrej Davydov performs much better with a scaling
factor of 1.5. This scaling factor effectively corresponds to the ratio of the mean
phoneme durations of the synthetic reference voice rab and the voice kate (table
4.3) and hints that this aligner makes some assumptions about the minimum
and maximum time scale allowed.

An updated comparison of all aligners with the optimized settings can be
found in figure 4.6. The improvement for labels within a 10 ms interval from
the correct position ranges from 5 % for the aligner of Strecha to about 20 % for
the one of Davydov. Because of the high robustness of the results of Strecha’s
aligner, it is used for all following experiments.

According to [WK96], the segmentation boundaries of corpora manually la-
beled by different human experts agree with the accuracy that can be seen in
table 4.2. Compared to the automatic results, they show quite a bit of room for
improvement for phoneme labeling programs. Maybe other approaches based on
Hidden Markov Model (HMM) speech recognition engines could provide more
precise results if combined with a DTW based forced alignment.

4.3.2. Transcription Errors

The transcription generated from the speech synthesis system is rated by a
comparison with the manually labeled part of the kate corpus and 158 manually
labeled sentences from the rob200 corpus. Plosives separated into pause and
burst are merged into one phoneme prior to evaluation.

The phonemes from the kate corpus have been labeled independently from a
synthetic reference, whereas the rob data was corrected by a different human
expert based on the automatic phonemes generated by the speech synthesis.

The results are shown in table 4.4. The kate sentences have more replace-
ments of phonemes caused by the different lexicons used by the manual and the
automatic labeling. It also shows a larger number of manual labels that have no
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median(∆t/ms) for γ =

Aligner τ/ms 1.0 1.3 1.5 1.7 2.0

Karlheinz Stöber 0 16.343 17.116 16.460 17.975 18.843
4 13.479 14.167 13.524 16.592 17.708
6 12.287 13.481 13.139 15.938 17.755
8 12.634 12.995 12.827 15.879 17.333

10 12.379 13.291 13.068 15.791 17.600
Guntram Strecha 0 11.016 11.032 12.369 14.006 14.123

4 9.819 9.520 10.693 11.892 12.032
6 9.746 9.395 9.930 11.160 11.552
8 10.709 9.693 9.749 10.826 11.156

10 12.188 9.770 9.412 11.177 10.923
Andrej Davydov 0 215.839 137.292 38.064 66.372 147.560

4 216.275 136.351 36.635 67.773 148.921
6 216.425 136.351 36.336 68.838 148.921
8 215.839 135.258 35.219 69.236 151.538

10 213.914 136.448 36.375 74.359 151.538

Table 4.1: Median segmentation boundary errors for different scaling factors γ
and time shifts τ
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Figure 4.6: Histogram and plot of the segmentation boundary errors for shifted
and scaled references: (Str)echa (τ = 6 ms, γ = 1.3), (Stö)ber (τ = 8 ms, γ =
1.0), (D)avydov (τ = 8 ms, γ = 1.5)
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∆t/ms N

< 5 73 %
< 10 87 %
< 15 93 %
< 20 96 %
< 32 99 %
< 64 100 %

Table 4.2: Number of manually labeled
segment boundaries within a certain
maximum deviation (from [WK96])

Voice γ dmean

rab 1.0 66.15
1.3 85.89
1.5 99.23
1.7 112.32
2.0 132.14

kate 100.23

Table 4.3: Comparison of the mean
phoneme durations dmean of the kate
voice and the synthetic reference for
different scaling factors γ

kate rob

n n/N n n/N

Only in manual labels (D) 58 7.98 % 78 0.88 %
Only in manual labels, no silence 6 0.82 % 0 0.00 %
Same 599 82.50 % 8676 98.54 %
Replaced (S) 69 9.50 % 50 0.56 %
Not in manual labels (I) 6 0.82 % 367 4.16 %
Not in manual labels, no silence 0 0.00 % 230 2.61 %
Number of manual labels (N) 726 8804
Total 732 9171

Accuracy measure (A) 81.68 % 94.37 %

Table 4.4: Segmentation errors

automatic equivalent in contrast to the rob voice that features more phonemes
that are only present in the automatic segmentation. These characteristics of
the phonetic labeling despite the use of the same synthetic reference voice and
lexicon may be caused either by different speaking styles or by peculiarities of
the experts’ labeling.

The difference in accuracy of about 13 % is mainly caused by the different
lexicons that were used for the labeling of the kate voice. Most of these errors
seem to be vague cases that have no definite correct labeling. The rob results give
a good impression of the required manual work by a human expert necessary for
correction. It is advantageous to use the same dictionary for all tasks concerning
a given corpus to avoid differences caused by vague labeling.
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rob200 Recognition in % kate Recognition in %

Label # NB B|BB # NB B|BB

NB 1930 92.6 7.4 4040 97.3 2.7
B|BB 414 16.7 83.3 2773 47.8 52.2

NB B BB NB B BB

NB 1930 92.6 7.2 0.2 4040 97.3 2.7 0.0
B 231 27.7 64.1 8.2 1458 83.1 16.9 0.0
BB 183 2.7 30.0 67.2 1315 8.6 2.8 88.6

Figure 4.7: Confusion matrix and recognition rates for Festival phrase break
estimation

4.4. Prosodic Annotation
The training data consists of 158 sentences with 2344 words containing 3596
syllables from the rob200 corpus. Because the training and evaluation data
consists of well planned read speech, no accents have been marked as emphatic
and only one stress level is included in the following evaluations.

The kate corpus is employed to evaluate the algorithms for a different kind of
break and stress annotation. Because of the very short utterances in this corpus,
the marked phrases are also much shorter and contain exactly one accent per
phrase.

4.4.1. Rule-based Break Estimation

The probalistic model for phrase segmentation of synthesized utterances that
is used in Festival for the UK English voices is compared with the manually
labeled phrase breaks (figure 4.7). It can be seen that the Festival algorithm
can predict phrase breaks for the rob200 corpus with about 85 % precision if the
level of phrase break does not matter. With a distinction between intermediate
and final break, the accuracy drops to about 65 %.

The agreement of the automatic annotation with the manual labels from the
kate corpus is much worse. The phrase break annotation from Festival creates
larger phrases than in the corpus, resulting in a lot of intermediate breaks not
recognized. The precision is about 50 % for merged phrase breaks and splits
unevenly between the classes if intermediate and final breaks are distinguished.

For longer utterances, there is a surprisingly high correlation between the
breaks marked with the probabilistic Festival tagger and the manual labels.
Additionally, the resulting breaks are at linguistically correct positions that
should not generate prosody that will be sensed as incorrect when synthesized.
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4.4.2. Derivation from Fujisaki Parameters

In contrast to the Festival probabilistic model, Fujisaki parameters can be used
to predict both phrase breaks and word accents. The parameters

• Limit: Threshold relative to the phrase maximum for the accent score
• Split: accents are split between words, otherwise only the word which

contains most of the accents area is used.
• Relative: Accents are rated relative to the word length, i. e. longer words

get lower scores.

are calculated by EO with

• Initialization: random values
• Parent selection: selection by fitness
• Recombination: average of parents
• Mutation: random for the boolean, Gaussian-distributed for the floating

point parameters
• Fitness evaluation: single objective
• Survivor selection: kill worst
• Strategy: (µ+ λ)

For simplicity a single objective optimization of the overall recognition rate
is used. Figures 4.8 and 4.9 show the optimized recognition rates of manu-
ally labeled word accents and phrase breaks for the rob200 and kate corpora,
respectively.

Similar to the rule-based phrase break estimation, the results for the kate
corpus are worse. Nevertheless, the achieved recognition rates are comparable
to the ones of the Festival method for both corpora.

The stress prediction works slightly better for the kate corpus with about
70 % recognition rate and about 65 % for the rob corpus. Compared to human
labelers that agree with about 87 % on the presence of an accent [GRB+96],
these results are promising.

A more sophisticated processing of the Fujisaki phrase commands may im-
prove the phrase break estimation. The current method creates a high amount
of predicted breaks that are just one word before or after the manually marked
break. In combination with the probabilistic tagger, some of these cases could
be corrected if information about break probability would be included in the
algorithm.

Similarly, the stress detection could be modified to ignore certain POS classes
such as pronouns etc. that are very unlikely to be accented. Furthermore,
detailed analysis of the position and size of multi-word Fujisaki accent com-
mands and the sensed stress position by a human listener may provide further
possibilities for optimization.
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Reference Recognition in %

Label # ¬S S

¬S 1877 71.1 28.9
S 467 29.3 70.7

NB B|BB

NB 1930 93.4 6.6
B|BB 414 23.9 76.1

NB B BB

NB 1930 93.4 6.4 0.2
B 231 38.1 61.5 0.4
BB 183 6.0 10.4 83.6

Optimized result

RRS

RR¬S

Limit

RR

0 0.2 0.4 0.6 0.8 1.0
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Figure 4.8: Confusion matrix and recognition rates for stress and phrase break
estimation with Split=false, Relative=false, Limit=0.102 for the rob200
corpus

Reference Recognition in %

Label # ¬S S

¬S 4053 57.3 42.7
S 2760 30.9 69.1

NB B|BB

NB 4040 89.6 10.4
B|BB 2773 43.3 56.7

NB B BB

NB 4040 89.6 10.4 0.0
B 1458 74.8 25.2 0.0
BB 1315 8.5 0.5 91.0

Optimized result
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Figure 4.9: Confusion matrix and recognition rates for stress and phrase break
estimation with Split=false, Relative=false, Limit=0.264 for the kate
corpus
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4.4.3. Neural Network Optimization

The training is done with the previously described parameter set and the fol-
lowing settings [Hof04]:

• Backpropagation learning algorithm
• 25 % combined validation and test set
• Fully connected two layer MFN without shortcut connections
• Training patterns grouped by output field value and duplicated as needed

to get groups of equal strength

The tables D.7 to D.9 in appendix D.5 show the results for three different
training setups and various network structures with the rob200 and kate cor-
pora. The context size in these tables represents the number of previous and
following words that are additionally used as input for the ANN. Additionally,
the appendix contains some tables which compare the overall recognition rates
for word accents and phrase breaks for the different speakers and network struc-
tures.

In the following, an extensive analysis of the phrase break annotations per-
formed by the various ANNs is carried out. Similar results have been obtained
for the word stress levels assigned by the network, the necessary data can be
found in appendix D.5.

Analysis goals Different network structures and training scenarios have been
evaluated to determine the performance of the described approach for phrase
break annotations. The analysis concentrates on the following questions:

• How well can phrase breaks be recognized? Does the result improve if the
phrase break categories for intermediate and final breaks are combined
into one class?

• Is the approach suited for predictive use, i. e. can the labeling be inferred
by a network that is only trained on a small part of the whole corpus?

• Are the results of a network independent from the specific database and
speaker used for training?

Phrase break recognition The resulting recognition rates for the rob200 cor-
pus with a 25 % test set of all patterns and separate as well as merged interme-
diate and major break categories can be seen in table 4.5 and 4.6. The columns
RRNB, RRB|BB, RRB and RRBB contain the recognition rates for words followed
by no break, any break, an intermediate break or a major phrase boundary, re-
spectively. RR denotes the overall recognition rate independent from the break
category and RR the arithmetic mean of all recognition rates for the single
classes.

Two network structures with different number of neurons N1 and N2 in the
two hidden layers and various context sizes C are compared. Because of the
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C N1 N2 RRNB RRB RRBB RR RR

0 15 10 94.8 52.6 71.1 88.9 72.8
1 15 10 97.3 40.4 86.7 90.9 74.8
2 10 6 97.5 45.6 95.6 92.2 79.6
2 15 10 98.1 40.4 93.3 92.1 77.3

Table 4.5: Recognition rates with 25 % test set and separate break classes
(C: context size, N1, N2: number of neurons in the hidden layers, columns
{A,B,C,D} in the diagram correspond to lines in the table)
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A B C D

C N1 N2 RRNB RRB|BB RR RR

0 15 10 96.0 80.6 93.3 88.3
1 15 10 96.3 86.4 94.6 91.4
2 10 6 96.0 77.7 92.8 86.9
2 15 10 97.5 75.7 93.7 86.6

Table 4.6: Recognition rates with 25 % test set and merged intermediate and
major break classes (C: context size, N1, N2: number of neurons in the hidden
layers, columns {A,B,C,D} in the diagram correspond to lines in the table)

varying recognition results of different classes for one network, RR is always
lower than RR. Improved context knowledge as well as an increased number of
neurons generally leads to better recognition rates. The largest network with
±2 words context size seems to generalize worse, fitting more of the noise in
the data set than the smaller networks. The overall recognition rate for merged
categories is about 2 %, the average class recognition rate about 12 % better
than with separate classes.

Phrase break prediction Table 4.7 compares the results of the training with
a 25 % test set to one with a test set of 75 % of all patterns, thus modeling a
partially hand-labeled corpus where the rest should be annotated automatically.
Interestingly, the results are only slightly worse for the 75 % test set. The
network seems to be able to derive all the specific prosodic features influencing
the phrase segmentation for a given speaker from a small part of the whole
corpus (25 % corresponds to about 40 sentences).
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0.25 0.75 RR RR

C N1 N2 25 % 75 % 25 % 75 %

0 15 10 93.3 92.6 88.3 89.3
1 15 10 94.6 93.0 91.4 88.0
2 10 6 92.8 92.3 86.9 86.1
2 15 10 93.7 92.9 86.6 85.7

Table 4.7: Recognition rates with 25 % and 75 % test sets and merged interme-
diate and major break classes (C: context size, N1, N2: number of neurons in
the hidden layers, columns {A,B,C,D} in the diagram correspond to lines in
the table)
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A B C A B C

S M
RRS RRM RRS RRM

kate 75 % 80.3 78.6 83.8 83.2
kate 25 % 79.2 77.2 80.8 80.2
rob 100 % 71.1 70.0 77.7 75.1

Table 4.8: Recognition rates of the kate corpus for a neural network with 15
and 10 neurons in the hidden layers and a context size of ±2 words, shown
are the used training sets for split and merged break classes (the test patterns
were always different from the training patterns, columns {A,B,C,D} in the
diagram correspond to lines in the table)

Speaker independence To test the speaker independence of a so trained net-
work, a totally different database is used for comparison. Table 4.8 shows a
summary of the results for the rob and kate corpora. The average recognition
rate for a network that is trained on the rob and used for the kate corpus is
about 3 % to 6 % worse than the one trained on the kate corpus itself.

Overall Performance The results of the feature prediction with ANNs make
them a good solution for tasks where a part of the corpus is manually annotated
and can be used for training. The provided input features for the network
should be analysed for their influence on the performance of the ANN and
complemented with additional features if necessary.
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5. Discussion and Conclusions
This thesis developed an extensible framework for the automatic annotation of
speech corpora. It integrates a multitude of external tools already available such
as synthesis engines, phoneme aligners and annotation programs.

It has been successfully used for the annotation of recorded speech in the
TC-STAR project and has proven suitable for the processing of large amounts
of data that have to be extensively annotated.

The presented framework provides modules for the generation of various pho-
netic, prosodic and linguistic features solely from a recorded audio signal and the
transcribed speaker prompt. Several improved or new algorithms for pitchmark
derivation from EGG signals, pitchmark correction and word stress and phrase
break prediction have been implemented and evaluated with manual reference
data for UK English from different corpora.

Several phoneme aligners based on DTW have been used and evaluated for
the automatic phoneme alignment. A combination with HMM-based speech
recognition may improve the precision of the marked boundaries.

The pitchmark extraction from EGG signals and the correction with an ad-
ditional pitchmark track derived from time-domain features results in the de-
tection of reliable pitch periods suitable for synthesis. A further analysis of the
EGG signal could provide means to detect isolated GCIs that are not relevant to
speech synthesis or pitch determination and could therefore be omitted from the
merging process as well as additionial error measures that allow the correction
of erroneously detected pitchmarks. Because the strength of voicing for a glottal
oscillation cycle is available after the pitchmark extraction, laryngealization can
be easily detected und analyzed.

The implemented prosodic annotation modules for phrase break and word
stress detection provide a good estimation of these features in the recorded
speech. The still existing gap between the labeling precision of human experts
and the presented automatic algorithms may be further closed by various ap-
proaches that have been outlined in the corresponding sections. Because no lin-
guistic information could be obtained from the used LaipTTS synthesis, many of
the developed annotation modules do not work yet for German. An integration
of the DRESS speech synthesis system could improve on this situation.

Although the framework makes it possible to automatically process a complete
corpus without manual interaction, it still requires the expert for quality control
and parameter tuning. It would be interesting to increase the robustness of the
implemented algorithms by a more refined automatic parameter detection, e. g.
for minimum and maximum f0 values or the adjustment of threshold values.
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A. File Formats

A.1. Utterance File Formats
Various file formats are employed to represent data used for speech processing,
e. g. segmental phoneme information, base frequency contour and pitchmark
positions. This section presents several of the more common formats that are
needed for data storage or to communicate with the various external tools of
the framework.

A.1.1. Festival Utterance Format

The Festival utterance format is based on a non-mixed content model. The data
itself and the structural relations between them are stored separately in a file.

Each ASCII utterance file starts with a header (lines 1 to 4 in listing A.1)
and a line which describes the utterance’s features.

The next section Stream_Items (lines 6 to 11) stores the actual data objects.
An object identifier is followed a semicolon-separated list of features or () if no
features are available.

The Relations section (lines 12 to 19) provides the structuring Festival rela-
tions. For each relation, multiple lines describe the data objects that make up
the hierarchical structure. They consist of six numbers, denoting the item, the
associated data object, the parent, daughter, next and previous items respec-
tively. Missing links in the last four numbers are replaced by zero.

A.1.2. XML Utterance Format

Additionally, a self-descriptive Extensible Markup Language (XML) utterance
format is supported. It can hold the same information as the Festival format
and provides type-safe storage that can be processed by the many XML tools
available.

The format features the same separation between content and structure as
the Festival format. Because of the hierarchical nature, XML is well suited to
describe the utterance structure in itself without the need to reference parent,
daughter, previous and next items explicitly. The XML Document Type Defini-
tion (DTD) for the format can be seen in listing A.2, an example that describes
the same utterance as in listing A.1 is shown in listing A.3.
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EST_File utterance
DataType ascii
version 2
EST_Header_End

5 Features ()
Stream_Items
1 name Julia ; pos nnp ; pbreak NB ;
2 name syl ; stress 1 ;
3 name _dZ ; end 0.052 ;

10 4 name dZ ; end 0.116384 ;
End_of_Stream_Items
Relations
Relation SylStructure ; ()
3 3 2 0 4 0

15 4 4 0 0 0 3
2 2 1 3 0 0
1 1 0 2 0 0
End_of_Relation
End_of_Relations

20 End_of_Utterance

Listing A.1: Festival utterance example

<!ELEMENT utterance (features,items,relations)>
<!ELEMENT features (feature*)>
<!ELEMENT feature (#PCDATA)>
<!ELEMENT items (contents*)>
<!ELEMENT contents (features)>
<!ELEMENT relations (relation*)>
<!ELEMENT relation (features,item*)>
<!ELEMENT item (item*)>

<!ATTLIST feature
type (int|string|float) #REQUIRED
name CDATA #REQUIRED

>
<!ATTLIST contents id ID #REQUIRED>
<!ATTLIST relation name CDATA #REQUIRED>
<!ATTLIST item contents IDREF #REQUIRED>

Listing A.2: DTD for the XML utterance format
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<utterance>
<features />
<items>

<contents id="_1">
<features>

<feature type="string" name="name">Julia</feature>
<feature type="string" name="pos">nnp</feature>
<feature type="string" name="pbreak">NB</feature>

</features>
</contents>
<contents id="_2">

<features>
<feature type="string" name="name">syl</feature>
<feature type="int" name="stress">1</feature>

</features>
</contents>
<contents id="_3">

<features>
<feature type="string" name="name">_dZ</feature>
<feature type="float" name="end">0.052</feature>

</features>
</contents>
<contents id="_4">

<features>
<feature type="string" name="name">dZ</feature>
<feature type="float" name="end">0.116384</feature>

</features>
</contents>

</items>
<relations>

<relation name="SylStructure">
<features />
<item contents="_1">

<item contents="_2">
<item contents="_3" />
<item contents="_4" />

</item>
</item>

</relation>
</relations>

</utterance>

Listing A.3: XML utterance example
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_ 517.189
_dZ 18.633
dZ 89.409 0 99.8
u: 95:395 50 110.0 100 105.0

Listing A.4: Mbrola label file example

hend
8275 _dZ
8612 dZ

10004 u:

Listing A.5: PhonDat label file example

A.2. Segmental Information

A.2.1. Mbrola File Format

The Mbrola file format is used by the Mbrola synthesizer to specify phonemes,
durations and a piecewise linear pitch contour. Each line consists of the segment
name, the phoneme duration in milliseconds and pitch contour points separated
by whitespace. Each pitch contour point is specified as a tupel of the relative
position in the phoneme in percent and the pitch value at this position in Hertz
(listing A.4).

A.2.2. PhoneDat File Format

The German PhonDat project defined several different file formats to store seg-
mentation results [Sch04]. A header that stores meta data about the segmen-
tation file is followed by hend on a single line and the segmentation data. Each
entry consists of the first sample position and the name of each segment de-
limited by whitespace (listing A.5. Because of its dependency on sample units
the positions can’t be interpreted without an external signal file or explicitly
specified sample rate.

A.2.3. Xlabel File format

The Xwaves package by Entropic Inc. uses a special label file format for its
xlabel tool. The format is described in detail in [Ent98].

An Xlabel file consists of a header section followed by the label entries. The
header consists of keyword-value pairs delimited by spaces or tabs and ends with
a line containing only a single # sign. See [Ent98] for a list of all possible header
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signal 0001.manual
type 0
color 121
comment created using WaveSurfer wo nov 30 08:45:36 2005
font -misc-*-bold-*-*-*-15-*-*-*-*-*-*-*
separator ;
nfields 1
#

0.000000 121 _
0.517189 121 _dZ
0.535822 121 dZ
0.625231 121 u:

Listing A.6: XWaves label file example

0.000000 0.517189 _
0.517189 0.535822 _dZ
0.535822 0.625231 dZ

Listing A.7: Wavesurfer label file example

items.
The label file body consists of lines with three values, separated by blanks.

The first one specifies the tag time in seconds, the second the color used for
displaying the label and the third the label text. Listing A.6 shows an example
of such a label file. Because the label file contains only labeled time tags,
segmental information can be stored in two slightly different ways: the tag time
can either encode the end of a segment (Wavesurfer) or the beginning (most
project specifications).

A.2.4. Wavesurfer File Format

This is the native transcription format of the Wavesurfer program developed by
Kare Sjölander at the Centre for Speech Technology (CTT) of the Royal Insti-
tute of Technology (KTH) in Stockholm, Sweden [SB00]. Each line consists of
three fields that determine the segment boundaries in seconds and the displayed
label name. An example can be seen in listing A.7.

A.2.5. .Seg File Format

This kind of segment file consists of only one line with interleaved label names
and boundary positions. The first label name is always set to a. For the bound-
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a 8275 _dZ 8612 dZ 10004

Listing A.8: .Seg label file example

Line Contents

1 PCM file name
2 to 6 reserved
7 number of f0 values
8 number of Fujisaki phrase commands I
9 number of Fujisaki accent commands J
10 base frequency value
11 time step used for f0 analysis
12 to 20 reserved
21 1st phrase command
21 + I − 1 Ith phrase command
21 + I 1st accent command
21 + I + J − 1 Jth accent command

Table A.1: PAC file format

ary positions sample units are used, making it impossible to interpret such a
file without an associated signal file or sample rate. See [Kru03] for a more
thorough description of the format. Listing A.8 shows an example.

A.3. Other Formats

A.3.1. .PAC File Format

PAC files are used to store Fujisaki parameters. The basic structure can be seen
in table A.1. Phrase and accent command lines consist of four values delimited
by whitespace. For a phrase command, the first value contains the onset time in
seconds, the third the phrase command amplitude and the fourth the coefficient
alpha, the second field is unused. For an accent command, the first two values
are onset and offset time followed by the accent command amplitude and the
coefficient beta. An example is shown in listing A.9, multiple reserved lines have
been collapsed into one empty line.

A.3.2. PM Files

This is a binary format to represent pitchmark positions [Kru03]. A file consists
of an eight byte header and four byte period marker chunks (table A.2). The
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0001.wav

200
1
2
0.000000
0.010000

0.343412 0.000000 1.906760 0.750042
0.402377 0.718791 0.476134 18.820200
1.046570 1.470500 0.341375 23.212700

Listing A.9: PAC Fujisaki parameter file example (multiple empty lines col-
lapsed into one line)

Header (8 bytes)

0x0000 u16 file identification (set to 0x0002, used to detect byte order)
0x0002 u16 sampling frequency
0x0004 s32 reserved

Period markers (4 bytes)

0x0000 u16 period length since last marker
0x0002 s8 voicing (0 means unvoiced, 1 voiced)
0x0003 s8 unused (0) or correction c

Table A.2: PM file format

sampling frequency value in the header can’t be used for sample rates larger
than 65535 Hz.

In [Eng03] an extension to the format to reduce quantization errors is intro-
duced. The unused byte in the marker chunks is used to correct the stored
period lengths between sample positions. The new pitchmark position is calcu-
lated from period lengths ∆Tj and the correction value c with

Ti,refined =
i−1∑
j=0

∆Tj +
c

256

A.3.3. Pitchmark Files

Text based pitchmark files basically consist of one pitchmark per line, given by
its position in seconds (listing A.11 right). Unvoiced pitchmarks are marked
with negative positions.

71



A. File Formats

0x0000 02 00 80 3E # id, sample rate = 16 kHz
0x0004 00 00 00 00 # reserved
0x0008 4F 00 00 00 -79.00
0x000C 22 00 00 00 -113.00
0x0010 73 00 01 7A 228.48
0x0014 86 00 01 A3 361.64
0x0018 7E 00 01 66 488.40
0x001C 80 00 01 AF 615.68

Listing A.10: PM pitchmark file example

# 0.3
79.00 0 -79.00

113.00 0 -113.00
228.48 1 0.121
361.64 1 0.767 361.64
488.40 1 -1.000 0.212 488.40
615.68 1 0.754 615.68

Listing A.11: Comparison of a multicolumn pitchmark file including confidence
scores and a threshold with a file using negative values for unvoiced pitchmarks

An extended variant is used to store more information in additional columns
(listing A.11 left). The first line contains a comment with the threshold to be
applied automatically to the confidence scores in the file. Values other than zero
in the second column mark voiced pitchmarks, otherwise they are regarded as
unvoiced. The third column holds the confidence score, with zero for disabled
and -1 for unconditionally enabled pitchmarks. If the confidence value has
been changed manually, the forth column contains the original value before the
modifcation.

A.3.4. Entropic Fundamental Frequency Contour Files

The fundamental frequency files used by Entropic’s tools are simple text files
consisting of one pitch value per line with a frame step of 10 ms [Ent96]. Each
line contains four fields that hold the fundamental frequency value in Hertz, the
probability of voicing in the range of 0 to 1, the RMS value of a 30 ms Hann
window and a peak normalized cross-correlation value for time-domain based
algorithms (listing A.12).
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0.0 0 1387.9 0
0.0 0 1965.2 0

237.7 1 2725.6 0
241.4 1 3216.2 0
247.9 1 3503.2 0

Listing A.12: Entropic fundamental frequency contour file

| - { z - | - r I - g A: d z - | - n aI - t r @ - dZ @ n - | -
l e - v @ l z - <pau> | - w i: - | - w U d - | - n i: d - | - r I
- l aI - b @ l - | - s t @ - t I - s t @ k s - <pau> | - { n -
| - d eI - t @ - | - f r Q m - | - D @ - | - v e@ - r I@ s - | -
m e m - b @ - | - s t eI t s - |

Listing A.13: TC-STAR phonetic annotation file

A.3.5. TC-STAR Phonetic Format

The file format for the phonetic transcription of the TC-STAR project includes
word and syllable boundaries as well as pauses. Phonemes are delimited by
whitespace, syllables by - and words by |. The outer syllable and word delimiters
are not omitted, pauses are attached to the preceding word and marked with
<PAU> (listing A.13).

A.3.6. TC-STAR Prosodic Format

This file format is used to store prosodic information for the TC-STAR project.
It contains the plain text utterance enriched with markup for pitch accent and
phrase structure. A word followed by # is marked as normally, one followed by
## as emphatically accented. Intermediate intonational phrases are delimited
by <b>, whereas major phrase breaks are marked with <BB>. An example can
be seen in listing A.14.

As regards <b>
nitrogen# levels, <BB>
we would need reliable statistics# <b>
and data# from the various Member States#. <BB>

Listing A.14: TC-STAR prosodic annotation file
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The following sections show some examples for the usage and extension of the
framework.

B.1. . . . Annotate a Corpus

B.1.1. General Notes

The executable Java classes (programs) are called with

sh> java [Java params] mh21.progs.ClassName [program params]

The parameters of the Java interpreter can be obtained with java -h. Most of
them are not necessary for the execution of the framework, although it may be
necessary to increase the heap memory available to Java with e. g. -Xmx512M.

General parameters that are available for all programs are:

--help
shows command line parameter documentation

--verbose
increases the verbosity of messages

--quiet
decreases the verbosity of messages

--dump
shows the attributes of all selected modules and performs rudimen-
tary tests of external programs

Parameters written in upper case reference constants that are described in
appendix F. The allowed values can also be found in the command line docu-
mentation available with --help.

B.1.2. Wave File Preparation

The recorded continuous wave files have to be cut into utterances to be pro-
cessed. Open the audio track in Wavesurfer and create a transcription file that
marks utterance segments with e. g. U and silence with _. Move each wave file
into a separate directory and execute

sh> java mh21.progs.RunCutter \
--input input.lab --input-format FORMAT --wave input.wav
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for each track with the following command line parameters:

-i, --input FILE
manually labeled utterance segmentation for the continuous wave
file

-I, --input-format FORMAT
file format for the labels, see section F.3.2

-w, --wave FILE
continuous wave file

-s, --silence
creates additional wave files for the segments marked as silence

to generate numbered output wave files in the current directory for each marked
segment. This should work independent of the encoding used for the wave file
and provide track segments that match each other exactly.

B.1.3. Text Preparation

The text files used for the synthesis need to be syntactically correct for the target
language. They should be provided in a supported character encoding (like
UTF-8 or Latin 1/ISO-8559-1) and manually corrected for the most common
mistakes. Listing B.1 shows some commands that can be used to detect and
correct problematic expressions and characters:

• DOS/Windows CR/LF line endings should be replaced by Unix-style LFs.
• Line numbers at the beginning must be removed.
• Excessive whitespace before “,”, “.”, “;”, “:”, “!”, “?” and “)” or after “(”

should be deleted.
• Umlauts like “å”, “ae” or “ß” should be replaced be their ASCII “a”, “ae”

or “ss” equivalents depending on the dictionary and synthesis engine used.
• Spacing of single and double quotation marks should be corrected to not

include any space between an opening or closing quotation mark and the
following or preceding word, respectively.

• Whitespace around apostrophes like in “boy ’ s” should be removed.

B.1.4. Forced Phoneme Alignment

The forced alignment interface in mh21.progs.RunPipe supports the following
steps that can be selected with the parameters --first and --last:

1. gpc: A GPC reads a text file and produces a phoneme sequence with
additional linguistic information.

2. synthesizer: The phoneme sequence is converted into a synthesized
speech signal.
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# Replace preceding spaces
sed -ri ’s/ ([.,;?!:)%])/\1/g’ *
# Delete line numbers (surrounded by whitespace) at the
# beginning of the line
sed -ri ’s/^\s*[0-9]+\s*//’ *
# Replace following spaces
sed -ri ’s/\( /(/g’ *
# Replace DOS/Windows line endings
sed -ri ’s/\r//g’ *
# Search for files that have unusual characters in them
grep --color "[^-A-Za-z0-9,.;\!?:]" *
# Search again, more tolerant
grep --color "[^-A-Za-z0-9,.;\!?:’\"%/ ]" *

Listing B.1: Commands to detect and correct common text problems

Module Input parameters Output parameters

gpc --synth-phones --synth-wave
synthesizer --synth-phones --synth-wave
processor --synth-phones --reference-phones

--synth-wave --reference-wave
aligner --reference-phones --user-phones

--reference-wave
--user-wave

Table B.1: Input and output parameters for the modules of the forced alignment
modules

3. processor: The phoneme sequence and synthesized speech signal are
modified to become the reference for the alignment.

4. aligner: The reference phoneme sequence and signal are aligned to the
natural speech signal, creating the aligned phoneme sequence.

The required parameters for each module can be seen in table B.1. If several
steps are executed at once, temporary files will be used for intermediate results
that are generated in-between and that do not have a name specified on the
command line. Most of these command line parameters can be complemented
by additional options to specify file format and phone set.

To demonstrate the use of the alignment interface, the following example il-
lustrates the necessary steps to align an utterance of a speaker of British English
with the help of Festival, Mbrola and the DTW aligner of Guntram Strecha.

To get an overview of the available modules, we execute

sh> java mh21.progs.RunPipe --help

76



B. How to . . .

We select a Festival GPC (festival), the Mbrola synthesizer (mbrola), a pro-
cessor that splits plosives into pause and burst (plosive) and the aligner of
Guntram Strecha (strecha). The call of

sh> java mh21.progs.RunPipe --first gpc --last aligner -d \
--gpc festival \
--synthesizer mbrola \
--processor plosive \
--aligner strecha

provides a list of the available parameters for these modules and does a rudimen-
tary test of the required external programs. It also checks for the availability of
audio file converters like Sox and Ecasound.

The most common parameters for these modules can be found in table B.2.
The selected British English rab voice in Festival creates phonemes in the
BritishMRPA phone set whereas the Mbrola voice en1 requires phonemes en-
coded in BritishMbrola. A look at the help page of the program shows that this
conversation is included in the list of known phone set transformations that can
be applied automatically.

With input text provided in UTF-8 encoding that should get any remaining
accents removed before synthesis, the following command line will invoke the
forced alignment with temporary intermediate files and a more verbose output
containing a list of all external programs that are called in the process. It creates
a Festival utterance file with all phonemes in BritishDress encoding.

sh> java mh21.progs.RunPipe --first gpc --last aligner -v \
--gpc festival \
--synthesizer mbrola \
--processor plosive \
--aligner strecha \
--user-text 001.txt --user-text-format utf8-strip \
--user-wave 001.wav \
--user-phones 001.est --user-phones-set BritishDress \
--user-phones-format festival

B.1.5. Correcting Linguistic and Phonetic Tracks

The utterance produced by the forced phoneme alignment can now be modified
and annotated with various data tracks created by mh21.progs.RunAnnotators.
The most important parameters are:

-i, --input FILE
input file for the utterance that will be annotated

-o, --output FILE
output file for the annotated utterance
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Parameter Modules Description

Executable festival
mbrola
strecha

Executable to use. If no path is supplied, the
PATH environment variable is used to look for
the executable.

Voices festival
mbrola

All voices known by the module. Each voice
has an associated phone set that defines the
encoding used for the generated phonemes.

Voice festival
mbrola

Currently selected voice.

Phoneset festival
mbrola

Phone set associated with the currently se-
lected voice. This attribute is determined au-
tomatically depending on the selected voice
and can’t be set manually.

Converter plosive
strecha

Forces the use of a specific audio file conver-
sion program as needed for this processor.
An empty string means automatic selection
depending on the known capabilities of the
programs.

Plosives plosive Comma separated list of plosives that should
be split into pause and burst. This should
also contain africates like [tS] or [pf].

Position plosive Relative position to use for the pause-burst
boundary on the longest monotonous in-
crease in the signal energy. Can be in the
range of 0 to 1 or steepest to take the point
of the maximum slope.

ReferenceShift strecha Shifts the reference labels by a certain num-
ber of ms before the phoneme alignment.

Config strecha Pathname of the configuration file to use of
the aligner.

Table B.2: The most important attributes of a forced alignment process using
Festival, Mbrola, a plosive splitter and the aligner of Guntram Strecha
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-w, --wave FILE
wave file for the processing by annotation modules

-a, --annotator ANNOTATOR
comma-delimited annotation modules, see section F.2.1

-A, --annotator-param ANNOTATOR,KEY=VALUE,...
module parameters

To manually correct the produced phonetic segmentation, the phoneme labels
can be exported in a format suitable for Wavesurfer or Xwaves:

sh> java mh21.progs.RunAnnotators -v \
--input 001.est \
--output 001.lab --output-format wavesurfer

Together with an external lexicon to correct the syllable boundaries generated
by Festival, the manually modified phoneme boundaries can be merged back
into to utterance. Phoneme insertion, deletion and modification will be handled
in a graceful manner.

sh> java mh21.progs.RunAnnotators -v \
--annotator label,syllable \
--annotator-param label,LabelFile=001.man.lab \
--annotator-param syllable,LocalLexiconFile=lex.txt \
--input 001.est \
--output 001.corrected.est

B.1.6. Annotation

The most commonly used annotators are shown in figure B.1, the full list of
all available annotators with a description of their attributes can be found in
appendix F.2.1.

The following example demonstrates the determination of pitchmarks from
an EGG signal. The used threshold and the minimum and maximum base
frequency values have to be determined by manual inspection of the acoustic
and EGG tracks for some utterances by the speaker. Unvoiced pitchmarks are
inserted in areas without voiced pitchmarks samples that are longer than a
certain multiple of the pitch period:

sh> java mh21.progs.RunAnnotators -v \
--annotator laryn,unvoiced \
--annotator-param laryn,MaximumF0=200,MinimumF0=50 \
--annotator-param unvoiced,MaximumF0=200,MinimumF0=50
--annotator-param unvoiced,Threshold=0.2,MaxGap=4 \
--input 001.corrected.est \
--output 001.annotated.est \
--wave 001.laryn.wav
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Parameter Modules Description

MinimumF0 gcida
laryn
unvoiced
pitch2f0
smoothf0

Minimum base frequency value expected
by the module. This value should be de-
termined manually from a sample of the
recorded corpus. Lower f0 values than
set by this limit may result in spurious
inserted pitchmarks caused by noise. If
this limit is too low, the insertions of
random unvoiced pitchmarks may not
work as expected.

MaximumF0 gcida
laryn
unvoiced
pitch2f0
smoothf0

Maximum base frequency value ex-
pected by the module. This value should
be determined manually from a sample
of the recorded corpus. Higher f0 val-
ues than set by this limit may result
in “holes” in the pitchmark sequence,
whereas a limit too high may insert spu-
rious pitchmarks because by noise.

InputRelation
OutputRelation

unvoiced
pitch2f0
smooth
fuji
fuji2f0
fuji2prosody

Input and output relations that are used
to read the data to be processed and to
store the results afterwards. If the out-
put relation exists beforehand, it will be
deleted and recreated right before the re-
sults are stored. The output relation can
be the same as the input relation.

Threshold unvoiced
laryn

Confidence threshold in the range 0 to
1 to determine reliable pitchmarks from
an EGG signal. All pitchmarks with
lower confidence will be deleted prior to
processing or storage.

LowPass
HighPass

laryn Filters to use for the EGG signal. The
low pass filter suppresses slow changing
signal parts caused by head or larynx
movements. The high pass filter reduces
the noise level but degrades the precision
of the pitchmark positions.

Insert unvoiced Determines whether randomly gener-
ated unvoiced pitchmarks are inserted.
The minimum and maximum base fre-
quency values are respected.

Table B.3: The most important attributes for pitch and prosodic annotation
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polarisation
Signal Polarisation

gcida
Time-Domain Pitchmarks

laryn
Laryngograph Pitchmarks

unvoiced
Clean/Complete Pitchmarks

pitch2f0
Pitchmarks → F0 Contour

power
Power Contour

smooth
Smooth F0 Contour

fuji
Fujisaki Parameters

fuji2f0
Fujisaki → F0 Contour

fuji2prosody
Fujisaki → Prosody

Figure B.1: Relationship beween the most used annotators. For a given anno-
tator, one or any of the preceding annotators are required for proper function.

B.1.7. Bulk Processing

To annotate large corpora, scripts to do automated bulk processing are necessary
to generate consistent data and to be able to rerun certain annotation steps.
The presented example scripts utilize the following directory structure:

corpus/ Main directory for the whole corpus.

java/ All Java classes of the framework, including files required during
the execution of the framework like configuration settings or global
lexicons.

scripts/ The here described scripts to automate the annotation.
data1/ Data directories for the corpus recordings.

track01/ Audio files for the first track and generated annotations.
track02/ Additional tracks.
. . .

. . .
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#!/bin/bash
. $(dirname $([ -h $0 ] && readlink $0 || echo $0))/jp_default.sh
jp_init "$@"

5 for i in "${jp_files[@]}"; do
jp_file i

echo $num
java -Xmx512M mh21.progs.RunPipe -v \

10 --first gpc --last aligner \
--gpc festival --synthesizer mbrola \
--processor plosive --aligner strecha \
--user-text "$num".txt --user-text-format utf8-strip \
--synth-wave "$num".synth.wav \

15 --reference-phones "$num".synth.pho \
--reference-phones-set BritishMbrola \
--user-wave "$num".wav \
--user-phones "$num".est --user-phones-format festival \
--user-phones-set BritishDress

20 done

jp_done

Listing B.2: Example script for forced phoneme alignment (jp_aligner.sh)

To assure consistency, all scripts are only stored once in the designated script
directory. For each recording, the directory of the first track should have sym-
bolic links to the scripts created with e. g.

track01/wav_01> ln -s ../../scripts/*.sh .

and will be used for storage of all annotation results.
A simple example for a script to automate forced phoneme alignment can be

seen in listing B.2. It uses some helper functions from listing B.3 that ease the
command line parsing and allow to change to the Java root directory before the
processing. All similarly structured scripts can be called without parameters
and will process all files with a given extension (line 23) or may be limited to
stripped filenames given on the command line (line 29). After a call to jp_file
(line 6), the variables short_num, num and path can be used to refer to the
filename without extension, the complete pathname without extension or only
the path of the currently processed file, respectively.
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#!/bin/bash
jp_stripext() {

result=${!1}
for ((i=3;i<=$#;++i)); do

5 result=${result%${!i}}
done
export $2="$result"

}

10 jp_init() {
DIR=‘pwd‘
pushd $FRAMEWORKROOT > /dev/null
if [ $# -gt 0 ]; then

jp_files=("$@")
15 # expand relative paths

for ((i=0;i<${#jp_files[@]};++i)); do
if [ "${jp_files[$i]:0:1}" != "/" ]; then

jp_files[$i]="$DIR"/"${jp_files[$i]}"
fi

20 done
else

shopt -s nullglob
jp_files=("$DIR"/{??,???,????}.txt)

fi
25 }

# Generates num, short_num and path variables from $1
jp_file() {

jp_stripext $1 num .wav .est .txt .lab .pho .pm
30 short_num=${num##*/}

path=${num%/*}
}

jp_done() {
35 popd > /dev/null

}

Listing B.3: Helper functions to aid in bulk processing of large corpora
(jp_default.sh)
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public final class PhoneTransformer
{

/* ... */
/** Convert Dutch SAMPA to Dutch Siemens. */
public static final PhoneTransformer DUTCH_SAMPA_TO_SIEMENS

= new PhoneTransformer (Name.DUTCH_SAMPA, Name.DUTCH_SCT,
"}", "Y", "i", "i:", "y", "y:", "u", "u:", "2:", "|:",
"Ei", "K", "9y", "L", "Au", "M", "O:", "<");

public enum Name implements DescriptiveEnum<Name> {
/** Dutch Siemens encoding */
DUTCH_SCT ("DutchSiemens", "Dutch Siemens CT"),
/** Dutch SAMPA encoding */
DUTCH_SAMPA ("DutchSampa", "Dutch SAMPA"),
/* ... */

}
/* ... */

}

Listing B.4: Two example phone sets for Dutch which can be converted between
each other

B.2. . . . Add a New Phone Set
The following two steps are necessary to define new phone sets that can be
automatically converted between each other (listing B.4):

1. The phone set names have to be registered as additional enum values in
mh21.prosodic.PhoneTransformer.Name. A short description must be
provided that will be used to generate the help for command line argu-
ments (lines 12 and 14).

2. A transformation table holds the phonemes that differ between the two
phone sets. A static instance of PhoneTransformer takes the enum con-
stants of the source and target phone sets together with the phoneme
tuples to be converted as arguments (line 5).

Afterwards, the PhoneTransformer class will enable conversations between all
phone sets that have transformations defined between them. This includes re-
verse operation where source and target phone set are exchanged as well as
chained conversations that require multiple transformation tables.
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B.3. How to Add a New GPC, Synthesis,
Processor, Aligner or Annotator Module

Several steps are necessary to add a new class as a module for forced alignment or
annotation which has attributes that are accessible from the command line. The
following example demonstrates the glue code needed to integrate an external
program synth as a GPC module:

1. Each module resides in a separate class that should be created in the
appropriate package (e. g. mh21.prosodic.gpc for GPC modules).

2. The newly created class needs to implement the corresponding interface for
the module type (Gpc, Synthesizer, Processor, Aligner or Annotator):

public class SynthGpc implements Gpc { /* ... */ }

3. The testExecutable method provides feedback of the status of the ex-
ternal program to the user. It is called before the actual processing takes
place and should provide some meaningful program output such as version
number or description on success. If the program is not available or non-
functional, an exception of type ExecutionFailedException is thrown.
An example implementation can be seen in listing B.5. The instance vari-
able executable stores the pathname of the external program.

4. For GPC modules, the convert(Text) method does all the work. The
source code of the already existing modules gives a good impression of the
details necessary for implementation.

5. The Attributable subinterface which provides the command line access
functionality for the module’s parameters can be either implemented by
deriving from ReflectiveAttributable

public class SynthGpc extends ReflectiveAttributable
implements Gpc {

/* ... */
}

or by using composition and delegates for the interface’s methods

public class SynthGpc implements Gpc {
private ReflectiveAttributable attributable =

new ReflectiveAttributable (this);

public String getAttribute (String key)
throws IllegalAttributeException

{
return this.attributable.getAttribute (key);

}
/* ... */

}
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private String executable = "synth";

public String testExecutable () throws ExecutionFailedException
{

List<String> command = new ArrayList<String>();
command.add (this.executable);
Processbuilder builder = new ProcessBuilder (command);
Process process = null;
try {

Globals.verbose ("Starting Synth: " + command);
process = builder.start ();

} catch (IOException e) {
throw new ExecutionFailedException (

"Was not able to start Synth", e);
}
BufferedReader reader = new BufferedReader (

new InputStreamReader (process.getInputStream ()));
String line = null;
try {

line = reader.readLine ();
} catch (IOException e) {

throw new ExecutionFailedException (
"Was not able to read output", e);

}
return line;

}

Listing B.5: Example implementation of the testExecutable method

Now it is only necessary to provide appropriate getter and setter meth-
ods for each attribute that should be readable and/or writable from the
command line and to use the ReflectiveAttributable.Description an-
notation for either the getter or the setter to make the attribute accessible:

@Description("pathname of Synth executable")
public String getExecutable ()
{

return this.executable;
}
public void setExecutable (String executable)
{

this.executable = executable;
}
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6. Finally, the module has to be registered with the appropriate enum class:

public final class Gpcs
{

public enum Type {
SYNTH ("synth", SynthGpc.class, "Synth GPC"),
/* ... */

}
/* ... */

}

B.4. How to Add Support for a New File Format
A file format is represented by a class that implements the PhoneFile interface.
It provides methods to read and write data from a binary stream. A simple
pitch file reader could be declared with

public class PitchFile implements PhoneFile

It needs to implement the read(InputStream) method that returns a newly
created utterance filled with the read data. An example method that reads
newline-delimited doubles into the pitchmark relation could look this:

public Utterance read (InputStream reader)
throws IOException

{
Utterance utterance = Utterance.create ();
Relation relation = utterance.createRelation

(Relation.PITCHMARK);
BufferedReader buffered = new BufferedReader

(new InputStreamReader (reader, "UTF-8"));
Item tail = null;
String line;
while ((line = buffered.readLine ()) != null) {

ItemContents contents = new ItemContents ();
contents.setObject ("pos", Double.valueOf (line));
tail = tail == null ? relation.appendItem (contents)

: tail.appendItem (contents);
}
return utterance;

}

The write(OutputStream,Utterance) method can be implemented to save
data in this format. If an operation is not supported for a particular file format,
an instance of ProsodicException should be thrown:
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public void write (OutputStream writer, Utterance
utterance) throws ProsodicException

{
throw new ProsodicException ("read-only");

}
}

To make to file format known to the input and output routines it has to be
registered with the PhoneFiles.Type enum class:

public class PhoneFiles
{

public enum Type {
PITCH ("pitch", "", "Pitch data", PitchFile.class),
/* ... */

}
/* ... */

}
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C.1. Gcida Aligner Fixes
The aligner developed by Toni Engel during his thesis has bugs that prevents
it to work with Microsoft wave files. A patch for these problems is shown in
listing C.1.

• The file format determination uses a 4-byte buffer (line 8) that is filled
with the potential RIFF signature of the input file. The following strcmp
call (line 14) will overflow on comparison and inhibit the recognition as a
wave file.

• The header processing uses unsigned long values to read fields that have
a size of 4 bytes. This does not work for 64-bit systems which have 64-
bit longs. The proposed fix uses ints (line 25) that are 32-bit on most
architectures.

--- gcida.C 2006-02-03 14:39:01.000000000 +0100
+++ gcida.C 2006-02-03 14:41:37.000000000 +0100
@@ -187,13 +187,13 @@

5 // Signal einlesen
// Auf *.WAV-Format pruefen

- char riff[4] ={0,0,0,0};
+ char riff[5] ={0,0,0,0,0};

for (l=0;l<4;l++) {
10 if (!feof(fidin)) {

fread(&riff[l],sizeof(char),1,fidin);
}

}
if (!strcmp(riff,"RIFF"))

15 IsWavFile = TRUE;
else

IsWavFile = FALSE;
@@ -200,8 +200,8 @@

20 // WAV-Header auswerten
if (IsWavFile && (header==-1)) {

- unsigned long nRiffSize;
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- fread(&nRiffSize ,sizeof(unsigned long),1,fidin);
+ unsigned int nRiffSize;

25 + fread(&nRiffSize, sizeof(unsigned int), 1, fidin);
if (feof(fidin)) {WAVERROR}

fseek(fidin,20,SEEK_SET);
@@ -221,14 +221,14 @@

30 if (nChannels !=1) {WAVERROR}

// Samples per second .. fs
- unsigned long nSamplesPerSec;
- fread(&nSamplesPerSec ,sizeof(unsigned long),1,fidin);

35 + unsigned int nSamplesPerSec;
+ fread(&nSamplesPerSec, sizeof(unsigned int), 1, fidin);

if (feof(fidin)) {WAVERROR}
if (Para.swap_in) SWAP_LONG(nSamplesPerSec);
fs = (long)nSamplesPerSec;

40

// Avg transfer rate .. ignorieren
- fread(&nSamplesPerSec ,sizeof(unsigned long),1,fidin);
+ fread(&nSamplesPerSec, sizeof(unsigned int), 1, fidin);

if (feof(fidin)) {WAVERROR}
45

// Block alignment .. ignorieren
@@ -242,12 +242,12 @@

if (Para.swap_in) SWAP_SHORT(nBits);
if (nBits !=16) {WAVERROR}

50

- unsigned long nHeader;
- fread(&nHeader ,sizeof(unsigned long),1,fidin);
+ unsigned int nHeader;
+ fread(&nHeader, sizeof(unsigned int), 1, fidin);

55 if (feof(fidin)) {WAVERROR}

- unsigned long SizeInBytes;
- fread(&SizeInBytes ,sizeof(unsigned long),1,fidin);
+ unsigned int SizeInBytes;

60 + fread(&SizeInBytes, sizeof(unsigned int), 1, fidin);
if (feof(fidin)) {WAVERROR}
if (Para.swap_in) SWAP_LONG(SizeInBytes);
Lx = (long)((double)SizeInBytes*8.0f/(16.0f*1.0f));

Listing C.1: Patch to fix gcida WAVE file problems
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Figure C.1: Wavesurfer pitchmark plugin

C.2. Wavesurfer Pitchmark Plugin
An additional Wavesurfer plugin is provided to evaluate and modify pitchmarks
(figure C.1). It has to be placed in the system or user Wavesurfer plugin di-
rectory, e. g. /usr/lib/wsurf1.8/plugins, ~/.wavesurfer/1.8/plugins or a
directory specified in the WSPLUGINDIR environment variable.

The pane is vertically divided into voiced and unvoiced pitchmarks. Auto-
matically extracted pitchmarks can include a confidence score in the range of
0 to 1 that is shown as a split bar. A threshold can be used to select only
pitchmarks with a higher confidence score. The status line shows the current
position, the selected threshold value and a short description of the available
mouse actions.

Pitchmarks can be inserted, deleted and modified. Most actions are accessible
from the context menu (figure C.3) as well as with the mouse:

• Pitchmarks can be inserted by selecting Insert Pitchmark from the context
menu or by double-clicking with the middle mouse button on an empty
position of the pane.

• To delete pitchmarks, use Delete Pitchmark from the context menu or
double-click with the middle mouse button on a specific pitchmark.

• Pitchmarks can be moved by dragging them with the middle mouse but-
ton.

• Selection of a pitchmark with the left mouse button shows information
about the pitchmark position, voicing and the confidence score as long as
the button is pressed.

• Drag a pitchmark between the upper and lower parts with the left mouse
button or select Change Voicing from the context menu to switch between
voiced and unvoiced.
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Figure C.2: Pitchmark plugin context menu and status line

• Double click with the left mouse button on a pitchmark to change its
confidence value. A pitchmark can be disabled (confidence=0) or un-
conditionally enabled (confidence=-1). In addition to these options, the
context menu provides the possibility to restore the confidence back to its
original value.

• Use the scroll wheel on the mouse to switch between two customizable
zoom levels.

The plugin can load and save simple and multi-column pitchmark files (see
section A.3.3). All stored files will include the selected threshold as a comment in
the first line and use the shortest format available for the following pitchmark
entries. To export only pitchmarks that have a confidence value larger than
the selected threshold in the simple pitchmark format, use the Export Effective
Pitchmarks entry in the context menu.

The property page (figure C.3) of the plugin allows to modify some of its
settings. The upper entries on the page can be used to adjust the appearance
of the display elements such as the pitchmark bars for voiced, unvoiced and
disabled pitchmarks. The filename extension is used to load a pitchmark file
with this extensions if it is available in the same directory. A change to this
setting causes the reload of the pitchmark file. The zoom level entries adjust the
magnification levels for the scroll wheel actions and the bottom checkboxes allow
the voiced and unvoiced bars to extend into waveform and frequency domain
panes.
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Figure C.3: Pitchmark plugin properties page

C.3. Festival Utterance Viewer
This program can be used to display and explore the contents of Festival ut-
terance files in a concise way. It is invoked from the prompt of the command
interpreter as follows:

sh> java mh21.progs.RunFestivalViewer [FILES...]

You can specify multiple files on the command line.
An example can be seen in figure C.4. The left list shows all available relations

and the linked items within them, the right column the features for the selected
relation or item, a preview of daughter items and a cross reference list for the
current item. Relations that are not direct ancestors of an item are displayed
in gray.

C.4. Phone File Conversion
To provide interoperability between the different external programs in the frame-
work, the RunAnnotators program can be used to convert between different
phone file formats and phone sets:

sh> java mh21.progs.RunAnnotators \
-i input-file -o output-file [OPTIONS]

The following command line parameters are supported:
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Figure C.4: Festival Utterance Viewer example

-i, --input FILE
input phone file name

-I, --input-format PHONEFORMAT
file format for the input phones, see section F.3.2

–input-phones-set PHONESET
phone set for the input phones, see section F.3.5

-o, --output FILE
output phones file name

-O, --output-format PHONEFORMAT
file format for the output phones, see section F.3.2

--output-phones-set PHONESET
phone set for the output phones, see section F.3.5

You must specify at least an input and an output file. For Festival and XML
files, the phone set is autodetected if possible. Only these two formats are
capable of storing interlinked data, all other conversations will result in loss of
information.
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D.1. POS tags
POS sets are used to sort words into classes that have a similar behavior. The
minimal tag set consists of noun, verb, pronoun, preposition, adverb, conjunc-
tion, adjective and article, although most currently used sets are larger than
that, e .g. Penn Treebank with 45 tags or Susanne with 353 tags [Ren05].

POS tags

pos phr Penn Description Examples

cc cc CC Coordinating conjunction and both but either nor yet
cd cd CD Cardinal number ’30s billion both i three
dt dt DT Determiner all an half that the these
ex ex EX Existential there there
fw n FW Foreign word deutsche esprit glasnost
in in IN Preposition or

subordinating conjunction
beneath from till whereas

jj j JJ Adjective gallant immense wounded
jjr j JJR Adjective, comparative better harder richer worse
jjs j JJS Adjective, superlative best eldest most richest
ls n LS List item marker a b c first second third
md md MD Modal can may ought will would
nn n NN Noun, singular or mass glee ketchup teddy urine
nns n NNS Noun, plural cans ears flames swings
nnp n NNP Proper noun, singular Christ Pluto Koenig Zhang
nnps n NNPS Proper noun, plural Afghans Hondas Vikings
of of of of
pdt pdt PDT Predeterminer both many quite such
pos pos POS Possessive ending ’ ’s
prp prp PRP Personal pronoun he me oneself us
prp prp PRP$ Possessive pronoun her ours their your
rb r RB Adverb perhaps tenfold wisely
rbr r RBR Adverb, comparative duller sooner wider

Table D.1: Alphabetical list of POS tags used for the pos and pos_phr fea-
tures in the Segment relation and the equivalent name from the Penn Treebank
Project (without punctuation) [San95]
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POS tags

pos phr Penn Description Examples

rbs r RBS Adverb, superlative best highest least
rp r RP Particle across away off upon
sym n SYM Symbol & = < >
to to TO to to
uh uh UH Interjection ah hey uh whoopee yeah
vb v VB Verb, base form bite load taste
vbd v VBD Verb, past tense cleaned lit meant
vbg v VBG Verb, gerund or

present participle
dumping reshaping working

vbn v VBN Verb, past participle jammed peeled won
vbp v VBP Verb, non-3rd person

singular present
bury jostle strive

vbz v VBZ Verb, 3rd person
singular present

comes flips needs visits

wdt wdt WDT Wh-determiner that what whichever
wp wp WP Wh-pronoun what whoever whom
wp wp WP$ Possessive wh-pronoun whose
wrb wrb WRB Wh-adverb how when wherein why

Table D.1: Alphabetical list of POS tags used (continued)
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D.2. International Phonetic Alphabet

IPA Phone SAMPA German SAMPA DRESS MRPA British

Vowels

[a:] a: Name
[a] a Dach
[e:] e: gehen
[5] 6 besser
[o:] o: groß
[O] O offen
[E:] E: spät
[8:] 2: schön
[œ] 9 plötzlich
[y:] y: süß
[Y] Y hũbsch
[E] E Gesetz e e e pet
[i:] i: Termin i: i: ii ease
[I] I in I I i pit
[u:] u: Schule u: u: uu lose
[U] U Hummel U U u put
[@] @ bitte @ @ @ another
[3:] 3: 3: @@ furs
[2] V V uh cut
[O:] O: O: oo cause
[6] Q O o pot
[A:] A: A: aa stars
[æ] { } a pat

Diphthongs

[OY] OY Kreuz
[aI] aI Eis aI aI ai rise
[aU] aU Haus aU aU au now
[@U] @U @U ou no
[I@] I@ I@ i@ fears
[e@] e@ e@ e@ stairs
[U@] U@ U@ u@ cures
[OI] OI OI oi noise
[eI] eI eI ei raise

Plosives

[p] p Pein p p p pin

Table D.2: International Phonetic Alphabet [Int96, Wel95]
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IPA Phone SAMPA German SAMPA DRESS MRPA British

[b] b Bein b b b bin
[t] t Teich t t t tin
[d] d Deich d d d din
[k] k Kunst k k k kin
[g] g Gunst g g g give
[?] ? Antritt ? ? ? bottle
Affricates

[pf] pf Pfahl
[ts] ts Zahl
[tZ] tZ Dschungel
[tS] tS Deutsch tS tS ch chin
[dZ] dZ dZ jh gin

Fricatives

[C] C sicher
[f] f fast f f f fin
[v] v was v v v vin
[s] s Tasse s s s sin
[z] z Hase z z z zing
[S] S waschen S S sh shin
[Z] Z Genie Z Z zh measure
[x] x Buch x x x loch
[h] h Hand h h h hit
[T] T T th thin
[D] D D dh this

Approximants, Trills

[R] r Frist
[j] j Jahr j j y yacht
[l] l Land l l l like
[ô] r r r run
[w] w w w wasp

Nasals

[m] m mehr m m m man
[n] n nahmen n n n not
[N] N Ding N N ng long

Table D.2: International Phonetic Alphabet (continued)
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D.3. Spline Filter Coefficient Calculation
H[n_, ω_] := ejω/2cos[ω/2]2n+1;

G[ω_] := 4jejω/2 sin[ω/2];

K[n_, ω_] := Simplify

[
1− Abs

[
H [n, ω]

]2
G[ω]

, ω ∈ Reals

]

Table
[
InverseFourierTransform

[
G[ω],

ω, t,FourierParameters → {1,−1}
]
, {t,−1, 0}

]
/.DiracDelta[0] → 1

{2,−2}

Table
[
InverseFourierTransform

[
H[1, ω],

ω, t,FourierParameters → {1,−1}
]
, {t,−2, 1}

]
/.DiracDelta[0] → 1{

1

8
,
3

8
,
3

8
,
1

8

}

Table
[
InverseFourierTransform

[
H[2, ω],

ω, t,FourierParameters → {1,−1}
]
, {t,−3, 2}

]
/.DiracDelta[0] → 1{

1

32
,

5

32
,

5

16
,

5

16
,

5

32
,

1

32

}

Table
[
InverseFourierTransform

[
Simplify[TrigToExp[K[1, ω]]],

ω, t,FourierParameters → {1,−1}
]
, {t,−2, 3}

]
/.DiracDelta[0] → 1{

− 1

128
,− 7

128
,−11

64
,
11

64
,

7

128
,

1

128

}

Table
[
InverseFourierTransform

[
Simplify[Expand[TrigToExp[K[2, ω]]]],

ω, t,FourierParameters → {1,−1}
]
, {t,−4, 5}

]
/.DiracDelta[0] → 1{

− 1

2048
,− 11

2048
,− 7

256
,− 11

128
,− 193

1024
,

193

1024
,

11

128
,

7

256
,

11

2048
,

1

2048

}

99



D. Tables

D.4. Default DTW Distance Function
N1 N2 d({N1}, {N2}) d({N2}, {N1})

Default 10 10
∗ _ 9 9
I i: 9 9
I @ 9 9
l= l 9 9
n= n 9 9

Table D.3: Default DTW distance function for labels (∗ denotes insertions and
deletions)

D.5. Neural Network Training Results

rob200 recognition rate in %

Method Fest Fuji A B C D

RR¬S 71.1 85.7 87.4 87.8 88.5
RRS 70.7 53.4 52.6 54.3 52.6
RR 71.0 79.3 80.5 81.2 81.3
RR 70.9 69.6 70.0 71.1 70.5

RRNB 92.6 93.4 96.0 96.3 96.0 97.5
RRB|BB 83.3 76.1 80.6 86.4 77.7 75.7
RR 91.0 90.3 93.3 94.6 92.8 93.7
RR 88.0 84.8 88.3 91.4 86.9 86.6

RRNB 92.6 93.4 94.8 97.3 97.5 98.1
RRB 64.1 61.5 52.6 40.4 45.6 40.4
RRBB 67.2 83.6 71.1 86.7 95.6 93.3
RR 87.8 89.5 88.9 90.9 92.2 92.1
RR 74.6 79.5 72.8 74.8 79.6 77.3

Table D.4: Recognition rates for the rob200 corpus (Fest: Festival phrase break
prediction; Fuji: Fujisaki parameter estimation; {A, B, C, D}: ANN with a 25 %
test set and <context size>-<neurons first layer>-<neurons second layer> {0-
15-10, 1-15-10, 2-10-06, 2-15-10}
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kate recognition rate in %

Method Fest Fuji A B C D

RR¬S 57.3 87.2 73.1 69.0 71.4
RRS 69.1 45.6 61.2 66.8 62.5
RR 62.1 78.9 68.2 68.1 67.8
RR 63.2 66.4 67.1 67.9 66.9

RRNB 97.3 89.6 84.3 87.3 86.4 87.6
RRB|BB 52.2 56.7 76.5 79.9 79.9 77.8
RR 78.9 76.2 81.1 84.3 83.8 83.6
RR 74.8 73.2 80.4 83.6 83.2 82.7

RRNB 97.3 89.6 75.3 82.1 84.0 81.7
RRB 16.9 25.2 46.7 64.6 59.1 59.9
RRBB 88.6 91.0 88.7 94.5 92.7 95.7
RR 78.4 76.1 71.8 80.7 80.3 79.7
RR 67.6 68.6 70.3 80.4 78.6 79.1

Table D.5: Recognition rates for the kate corpus with a 25 % test set

Recognition rates in % 25 % test set 75 % test set

Method Fest Fuji A B C D A B C D

RR¬S 71.1 85.7 87.4 87.8 88.5 70.1 86.9 86.8 85.4
RRS 70.7 53.4 52.6 54.3 52.6 63.9 47.0 51.0 47.6
RR 71.0 79.3 80.5 81.2 81.3 67.6 79.0 79.6 77.7
RR 70.9 69.6 70.0 71.1 70.5 67.0 66.9 68.9 66.1

RRNB 92.6 93.4 96.0 96.3 96.0 97.5 94.4 95.7 95.7 96.8
RRB|BB 83.3 76.1 80.6 86.4 77.7 75.7 84.2 80.3 76.5 74.5
RR 91.0 90.3 93.3 94.6 92.8 93.7 92.6 93.0 92.3 92.9
RR 88.0 84.8 88.3 91.4 86.9 86.6 89.3 88.0 86.1 85.7

RRNB 92.6 93.4 94.8 97.3 97.5 98.1 96.5 98.3 96.7 97.2
RRB 64.1 61.5 52.6 40.4 45.6 40.4 28.3 23.7 43.4 22.5
RRBB 67.2 83.6 71.1 86.7 95.6 93.3 82.5 89.1 86.9 88.3
RR 87.8 89.5 88.9 90.9 92.2 92.1 88.7 90.2 90.6 89.1
RR 74.6 79.5 72.8 74.8 79.6 77.3 69.1 70.4 75.6 69.3

Table D.6: Comparison of the recognition rates of the rob200 corpus for 25 %
and 75 % test sets
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Training Recognition in % Test Recognition in %

Network Label # ¬S S # ¬S S

0-15-10 ¬S 1404 97.7 2.3 468 85.7 14.3
S 350 1.7 98.3 116 46.6 53.4

1-15-10 99.1 0.9 87.4 12.6
1.4 98.6 47.4 52.6

2-10-06 99.3 0.7 87.8 12.2
0.6 99.4 45.7 54.3

2-15-10 98.6 1.4 88.5 11.5
1.1 98.9 47.4 52.6

NB B|BB NB B|BB

0-15-10 NB 1443 99.3 0.7 481 96.0 4.0
B|BB 311 1.0 99.0 103 19.4 80.6

1-15-10 99.3 0.7 96.3 3.7
1.3 98.7 13.6 86.4

2-10-06 99.6 0.4 96.0 4.0
0.6 99.4 22.3 77.7

2-15-10 99.5 0.5 97.5 2.5
0.6 99.4 24.3 75.7

NB B BB NB B BB

0-15-10 NB 1443 99.9 0.0 0.1 481 94.8 4.2 1.0
B 174 0.0 100.0 0.0 57 29.8 52.6 17.5
BB 138 0.0 0.0 100.0 45 4.4 24.4 71.1

1-15-10 100.0 0.0 0.0 97.3 2.3 0.4
0.0 100.0 0.0 52.6 40.4 7.0
0.0 0.0 100.0 2.2 11.1 86.7

2-10-06 100.0 0.0 0.0 97.5 1.7 0.8
1.1 98.9 0.0 36.8 45.6 17.5
0.0 0.0 100.0 4.4 0.0 95.6

2-15-10 100.0 0.0 0.0 98.1 1.5 0.4
0.0 100.0 0.0 47.4 40.4 12.3
0.0 0.0 100.0 0.0 6.7 93.3

Table D.7: Confusion matrix and recognition rates for stress and phrase break
estimation optimized by an ANN with a 25 % test set for the rob200 corpus. Net-
work names are in the format <context size>-<neurons first layer>-<neurons
second layer>.
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Training Recognition in % Test Recognition in %

Network Label # ¬S S # ¬S S

0-15-10 ¬S 468 97.9 2.1 1404 87.2 12.8
S 117 0.9 99.1 349 54.4 45.6

1-15-10 99.4 0.6 86.9 13.1
0.0 100.0 53.0 47.0

2-10-06 99.6 0.4 86.8 13.2
0.9 99.1 49.0 51.0

2-15-10 99.1 0.9 85.4 14.6
0.0 100.0 53.3 46.7

NB B|BB NB B|BB

0-15-10 NB 481 98.8 1.2 1443 94.4 5.6
B|BB 104 1.0 99.0 310 15.8 84.2

1-15-10 99.8 0.2 95.7 4.3
1.0 99.0 19.7 80.3

2-10-06 99.8 0.2 95.7 4.3
0.0 100.0 23.5 76.5

2-15-10 100.0 0.0 96.8 3.2
1.0 99.0 25.5 74.5

NB B BB NB B BB

0-15-10 NB 481 100.0 0.0 0.0 1443 96.5 1.9 1.5
B 58 0.0 100.0 0.0 173 44.5 28.3 27.2
BB 46 0.0 0.0 100.0 137 5.8 11.7 82.5

1-15-10 100.0 0.0 0.0 98.3 1.1 0.6
0.0 100.0 0.0 57.2 23.7 19.1
0.0 0.0 100.0 6.6 4.4 89.1

2-10-06 100.0 0.0 0.0 96.7 2.8 0.6
0.0 100.0 0.0 41.6 43.4 15.0
0.0 0.0 100.0 6.6 6.6 86.9

2-15-10 100.0 0.0 0.0 97.2 1.9 0.9
0.0 100.0 0.0 53.2 22.5 24.3
0.0 0.0 100.0 7.3 4.4 88.3

Table D.8: Confusion matrix and recognition rates for stress and phrase break
estimation optimized by an ANN with a 75 % test set for the rob200 corpus. Net-
work names are in the format <context size>-<neurons first layer>-<neurons
second layer>.
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Training Recognition in % Test Recognition in %

Network Label # ¬S S # ¬S S

0-15-10 ¬S 3040 87.1 12.9 1013 70.1 29.9
S 2070 11.0 89.0 690 36.1 63.9

1-15-10 93.8 6.3 7.31 26.9
2.9 97.1 38.8 61.2

2-10-06 93.0 7.0 69.0 31.0
4.3 95.7 33.2 66.8

2-15-10 95.7 4.3 71.4 28.6
2.3 97.7 37.5 62.5

NB B|BB NB B|BB

0-15-10 NB 3030 95.2 4.8 1010 84.3 15.7
B|BB 2080 9.9 90.1 693 23.5 76.5

1-15-10 98.8 1.2 87.3 12.7
2.5 97.5 20.1 79.9

2-10-06 99.1 0.9 86.4 13.6
2.3 97.7 20.1 79.9

2-15-10 98.8 1.2 87.6 12.4
2.0 98.0 22.2 77.8

NB B BB NB B BB

0-15-10 NB 3030 87.2 3.6 9.2 1010 75.3 10.6 14.1
B 1094 3.3 80.8 15.9 364 36.0 46.7 17.3
BB 987 3.1 0.9 95.0 328 7.6 3.7 88.7

1-15-10 98.2 1.6 0.2 82.1 13.7 4.3
0.7 99.1 0.2 26.1 64.6 9.3
0.6 0.3 99.1 4.3 1.2 94.5

2-10-06 86.6 2.7 10.7 84.0 9.9 6.1
1.5 89.2 9.3 31.6 59.1 9.3
0.9 0.3 98.8 5.5 1.8 92.7

2-15-10 97.7 1.6 0.7 81.7 13.7 4.7
0.5 98.9 0.5 37.1 59.9 3.0
0.5 0.1 99.4 3.7 0.6 95.7

Table D.9: Confusion matrix and recognition rates for stress and phrase break
estimation optimized by an ANN test set for the kate corpus. Network names are
in the format <context size>-<neurons first layer>-<neurons second layer>.
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E. License for the Developed
Programs

All programs developed for this thesis are free software; you can redistribute
them and/or modify them under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License,
or (at your option) any later version.
The programs are distributed in the hope that they will be useful, but WITH-
OUT ANY WARRANTY; without even the implied warranty of MERCHANT-
ABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Gen-
eral Public License for more details.

E.1. GNU General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed.

E.1.1. Preamble

The licenses for most software are designed to take away your freedom to share
and change it. By contrast, the GNU General Public License is intended to
guarantee your freedom to share and change free software–to make sure the
software is free for all its users. This General Public License applies to most
of the Free Software Foundation’s software and to any other program whose
authors commit to using it. (Some other Free Software Foundation software is
covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.
When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom to
distribute copies of free software (and charge for this service if you wish), that
you receive source code or can get it if you want it, that you can change the
software or use pieces of it in new free programs; and that you know you can
do these things.
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To protect your rights, we need to make restrictions that forbid anyone to deny
you these rights or to ask you to surrender the rights. These restrictions translate
to certain responsibilities for you if you distribute copies of the software, or if
you modify it.
For example, if you distribute copies of such a program, whether gratis or for a
fee, you must give the recipients all the rights that you have. You must make
sure that they, too, receive or can get the source code. And you must show
them these terms so they know their rights.
We protect your rights with two steps: (1) copyright the software, and (2) offer
you this license which gives you legal permission to copy, distribute and/or
modify the software.
Also, for each author’s protection and ours, we want to make certain that every-
one understands that there is no warranty for this free software. If the software
is modified by someone else and passed on, we want its recipients to know that
what they have is not the original, so that any problems introduced by others
will not reflect on the original authors’ reputations.
Finally, any free program is threatened constantly by software patents. We wish
to avoid the danger that redistributors of a free program will individually obtain
patent licenses, in effect making the program proprietary. To prevent this, we
have made it clear that any patent must be licensed for everyone’s free use or
not licensed at all.
The precise terms and conditions for copying, distribution and modification
follow.

E.1.2. Terms and Conditions for Copying, Distribution and
Modification

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms of
this General Public License. The “Program”, below, refers to any such program
or work, and a “work based on the Program” means either the Program or
any derivative work under copyright law: that is to say, a work containing
the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without
limitation in the term “modification”.) Each licensee is addressed as “you”.
Activities other than copying, distribution and modification are not covered by
this License; they are outside its scope. The act of running the Program is
not restricted, and the output from the Program is covered only if its contents
constitute a work based on the Program (independent of having been made by
running the Program). Whether that is true depends on what the Program
does.
1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and appro-
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priately publish on each copy an appropriate copyright notice and disclaimer of
warranty; keep intact all the notices that refer to this License and to the absence
of any warranty; and give any other recipients of the Program a copy of this
License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may
at your option offer warranty protection in exchange for a fee.
2. You may modify your copy or copies of the Program or any portion of it, thus
forming a work based on the Program, and copy and distribute such modifica-
tions or work under the terms of Section 1 above, provided that you also meet
all of these conditions:

a. You must cause the modified files to carry prominent notices stating that
you changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or
in part contains or is derived from the Program or any part thereof, to
be licensed as a whole at no charge to all third parties under the terms of
this License.

c. If the modified program normally reads commands interactively when run,
you must cause it, when started running for such interactive use in the
most ordinary way, to print or display an announcement including an
appropriate copyright notice and a notice that there is no warranty (or
else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a
copy of this License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on the
Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sec-
tions of that work are not derived from the Program, and can be reasonably
considered independent and separate works in themselves, then this License,
and its terms, do not apply to those sections when you distribute them as sepa-
rate works. But when you distribute the same sections as part of a whole which
is a work based on the Program, the distribution of the whole must be on the
terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.
Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control
the distribution of derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.
3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1 and
2 above provided that you also do one of the following:
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a. Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2 above
on a medium customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any
third party, for a charge no more than your cost of physically performing
source distribution, a complete machine-readable copy of the correspond-
ing source code, to be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

c. Accompany it with the information you received as to the offer to dis-
tribute corresponding source code. (This alternative is allowed only for
noncommercial distribution and only if you received the program in object
code or executable form with such an offer, in accord with Subsection b
above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface defi-
nition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need
not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating
system on which the executable runs, unless that component itself accompanies
the executable.
If distribution of executable or object code is made by offering access to copy
from a designated place, then offering equivalent access to copy the source code
from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.
4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy, modify,
sublicense or distribute the Program is void, and will automatically terminate
your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so
long as such parties remain in full compliance.
5. You are not required to accept this License, since you have not signed it.
However, nothing else grants you permission to modify or distribute the Program
or its derivative works. These actions are prohibited by law if you do not accept
this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do
so, and all its terms and conditions for copying, distributing or modifying the
Program or works based on it.
6. Each time you redistribute the Program (or any work based on the Program),
the recipient automatically receives a license from the original licensor to copy,
distribute or modify the Program subject to these terms and conditions. You
may not impose any further restrictions on the recipients’ exercise of the rights
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granted herein. You are not responsible for enforcing compliance by third parties
to this License.
7. If, as a consequence of a court judgment or allegation of patent infringement
or for any other reason (not limited to patent issues), conditions are imposed
on you (whether by court order, agreement or otherwise) that contradict the
conditions of this License, they do not excuse you from the conditions of this
License. If you cannot distribute so as to satisfy simultaneously your obligations
under this License and any other pertinent obligations, then as a consequence
you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who
receive copies directly or indirectly through you, then the only way you could
satisfy both it and this License would be to refrain entirely from distribution of
the Program.
If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as
a whole is intended to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or
other property right claims or to contest validity of any such claims; this section
has the sole purpose of protecting the integrity of the free software distribution
system, which is implemented by public license practices. Many people have
made generous contributions to the wide range of software distributed through
that system in reliance on consistent application of that system; it is up to the
author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.
8. If the distribution and/or use of the Program is restricted in certain coun-
tries either by patents or by copyrighted interfaces, the original copyright holder
who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permit-
ted only in or among countries not thus excluded. In such case, this License
incorporates the limitation as if written in the body of this License.
9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be similar
in spirit to the present version, but may differ in detail to address new problems
or concerns.
Each version is given a distinguishing version number. If the Program specifies
a version number of this License which applies to it and “any later version”, you
have the option of following the terms and conditions either of that version or
of any later version published by the Free Software Foundation. If the Program
does not specify a version number of this License, you may choose any version
ever published by the Free Software Foundation.
10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for per-
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mission. For software which is copyrighted by the Free Software Foundation,
write to the Free Software Foundation; we sometimes make exceptions for this.
Our decision will be guided by the two goals of preserving the free status of
all derivatives of our free software and of promoting the sharing and reuse of
software generally.

E.1.3. No Warranty

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE
IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMIT-
TED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PRO-
VIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE
QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU.
SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE
COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR
AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY
OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CON-
SEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY
TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS
OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-
TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PRO-
GRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBIL-
ITY OF SUCH DAMAGES.
END OF TERMS AND CONDITIONS

E.1.4. How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software which
everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest to attach
them to the start of each source file to most effectively convey the exclusion of
warranty; and each file should have at least the “copyright” line and a pointer
to where the full notice is found.

<one line to give the program’s name and what it does.>
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Copyright (C) 19yy <name of author>

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be
useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Also add information on how to contact you by electronic and paper mail.
If the program is interactive, make it output a short notice like this when it
starts in an interactive mode:

Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome to
redistribute it under certain conditions; type ‘show c’ for
details.

The hypothetical commands “show w” and “show c” should show the appro-
priate parts of the General Public License. Of course, the commands you use
may be called something other than “show w” and “show c”; they could even
be mouse-clicks or menu items–whatever suits your program.
You should also get your employer (if you work as a programmer) or your school,
if any, to sign a “copyright disclaimer” for the program, if necessary. Here is a
sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in
the program ‘Gnomovision’ (which makes passes at compilers)
written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may consider
it more useful to permit linking proprietary applications with the library. If this
is what you want to do, use the GNU Library General Public License instead
of this License.
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F. Modules and Attributes

Most components of the annotation system can be selected and configured with
command line parameters. The following sections give an overview of the avail-
able modules of a certain type and the attributes that are available.

The description follows the following format:

module-name (JAVA_NAME)
Description: Module description
Creates a JavaClassName with the following attributes:

Attribute description
. . .

F.1. Forced Alignment

F.1.1. Pipe.Modules

aligner (ALIGNER)
Description: Phone level aligner

evaluation (EVALUATION)
Description: Result evaluation

gpc (GPC)
Description: Grapheme phoneme conversion

processor (PROCESSOR)
Description: Synthesis result processor

synthesizer (SYNTHESIZER)
Description: speech synthesizer

F.1.2. Gpcs.Type

festival (FESTIVAL)
Description: Synthesis with the Festival Speech Synthesis System
Creates a FestivalGpc with the following attributes:

Voice currently selected voice
Scale ratio for phone durations
Phoneset phoneset of the currently selected voice
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Executable pathname of Festival executable
InsertSilence length of silence between words (ms)
Voices all known voices

laipttsgerman (LAIPTTSGERMAN)
Description: LaipTTS_D of Beat Siebenhaar, Lausanne
Creates a LaipTTSGermanGpc with the following attributes:

PauseStrength pause strength
Style speaking style: ‘n’ for normal, ‘s’ for slow/explicit, ‘f’ for fast
Phoneset phoneset for the German synthesis
LinearSpeed linear speed
F0Variation f0 variation
F0Base f0 base frequency

F.1.3. Synthesizers.Type

mbrola (MBROLA)
Description: Speech synthesizer by Thierry Dutoit, Mons
Creates a MbrolaSynthesizer with the following attributes:

Voice currently selected voice
Parameters additional command line parameters seperated by semi-
colon
Phoneset phoneset of the currently selected voice
DatabaseDir path of Mbrola voices
Executable pathname of Mbrola executable
Voices all known voices

F.1.4. Processors.Type

dummy (DUMMY)
Description: No processing
Creates a DummyProcessor with the following attributes:

Converter audio file format converter
plosive (PLOSIVE)

Description: Split plosives into pause and burst
Creates a PlosiveProcessor with the following attributes:

Plosives recognized plosives
Position steepest or 0.0 (minimum) to 1.0 (maximum)
Converter audio file format converter
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F.1.5. Aligners.Type

belarus (BELARUS)
Description: Belarussian aligner of Andrew Davydov
Creates a DavydovAligner with the following attributes:

ReferenceShift time shift for reference phones (ms)
Executable pathname of aligner-belarus executable
Converter audio file format converter

dspdtw (DSPDTW)
Description: Dsp_dtwalign aligner of Karlheinz Stöber
Creates a DspDtwAligner with the following attributes:

Wine pathname of Wine executable
ReferenceShift time shift for reference phones (ms)
Executable pathname of Dspdtw executable
Converter audio file format converter

strecha (STRECHA)
Description: TUD aligner of Guntram Strecha
Creates a StrechaAligner with the following attributes:

ReferenceShift time shift for reference phones (ms)
Executable pathname of dtwlabel-strecha executable
Converter audio file format converter
Config pathname of config file

F.1.6. Evaluations.Type

quadratic (QUADRATIC)
Description: Calculate standard deviation etc.
Creates a QuadraticEvaluation with the following attributes:

Type analysis type: type, label, separate
Filename output filename
Compress compress silence and plosives

F.2. Annotation System

F.2.1. Annotators.Type

fuji (FUJI)
Description: Calculates Fujisaki parameters from f0 values with fujies
Creates a FujisakiAnnotator with the following attributes:

InputRelation input relation
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OutputRelation output relation
ConfigFile pathname of wavelet config file
Executable pathname of Getfuji executable

fuji2f0 (FUJI_TO_F0)
Description: Calculates f0 values from Fujisaki parameters
Creates a FujiToF0Annotator with the following attributes:

Accents use accent information
InputRelation input relation
OutputRelation output relation
Phrases use phrase information

fuji2prosody (FUJI_TO_PROSODY)
Description: Calculates stress and phrase breaks from Fujisaki parameters
Creates a FujiToProsodyAnnotator with the following attributes:

InputRelation input relation
Split split accents between words
Relative calculate accent strength relative to word length
Phrases create phrases from Fujisaki phrase commands
Limit accent limit

polarisation (POLARISATION)
Description: Determines the signal polarisation
Creates a PolarisationAnnotator with the following attributes:

Converter audio file format converter
laryn (LARYNGOGRAPH)

Description: Calculates pitchmarks from a laryngograph signal
Creates a LaryngographAnnotator with the following attributes:

LowPass use a low pass filter
OutputRelation output relation
MinScale minimum scale for the Mallat wavelet
Normalize normalize Mallat results separately
MaxScale maximum scale for the Mallat wavelet
MinimumF0 minimum allowed f0 value
Converter audio file format converter
HighPass use a high pass filter
MaximumF0 maximum allowed f0 value
Threshold confidence threshold for pitchmarks

shift (PITCH_SHIFT)
Description: Shifts markers from a laryngograph signal to match signal
GCIs
Creates a PitchShiftAnnotator with the following attributes:
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InputRelation input relation
GciRelation GCI relation
OutputRelation output relation

unvoiced (UNVOICED)
Description: Fills gaps between voiced pitchmarks
Creates an UnvoicedAnnotator with the following attributes:

InputRelation input relation
OutputRelation output relation
Insert insert random unvoiced markers
MinimumF0 minimum allowed f0 value
MaxGap maximum gap between voiced pitchmarks (1/f_min units)
MaximumF0 maximum allowed f0 value
Threshold confidence threshold for voiced pitchmarks

gcida (GCIDA)
Description: Calculates pitchmarks with gcida
Creates a GcidaAnnotator with the following attributes:

SoxExecutable pathname of Sox executable
OutputRelation output relation
MinimumF0 minimum allowed f0 value
Executable pathname of Gcida executable
Converter audio file format converter
MaximumF0 maximum allowed f0 value

label (LABEL)
Description: Merges an external corrected label file
Creates a LabelMergeAnnotator with the following attributes:

PhoneSet phone set for the label file
LabelFormat label file format
LabelFile label file name

lexicon (LEXICON)
Description: Replaces phonemes with the ones from an external lexicon
Creates a LexiconMergeAnnotator with the following attributes:

LexiconFile lexicon file name
Plosives recognized plosives
LocalLexiconFile additional lexicon file name
PhoneSet phone set for the label file

pda (PDA)
Description: Calculates f0 values with pda
Creates a PdaAnnotator with the following attributes:

NoiseFloor noise floor (ADC units)
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LowPassFiltering input signal is low pass filtered
AntiDoublingHalfingRatio anti pitch doubling/halfing ratio
VoicedToUnvoiced voiced to unvoiced coefficient threshold
Executable pathname of Pda executable
MaximumF0 maximum allowed f0 value
PeakTracking peak tracking
FrameLength frame length in ms
DecimationFactor decimation factor for downsampling
OutputRelation output relation
WindowLength window length in ms
LpCutOff low pass cutoff frequency (Hz)
UnvoicedToVoiced unvoiced to voiced coefficient threshold
VoicedToUnvoicedRatio voiced to unvoiced coefficient threshold-
ratio
MinimumF0 minimum allowed f0 value
Converter audio file format converter
LpOrder low pass filter order (odd value)

pitch2f0 (PITCH_TO_F0)
Description: Converts pitchmarks to f0 values
Creates a PitchToF0Annotator with the following attributes:

InputRelation input relation
OutputRelation output relation
MinimumF0 minimum allowed f0 value
FrameLength frame length in ms

pitch2segments (PITCH_TO_SEGMENTS)
Description: Converts pitchmarks to segment labels (highly destructive)
Creates a PitchToSegmentsAnnotator with the following attributes:

InputRelation input relation
words2segments (WORDS_TO_SEGMENTS)

Description: Converts words to segment labels (highly destructive)
Creates a WordsToSegmentsAnnotator with the following attributes:

Stress mark stressed words with #
power (POWER)

Description: Adds power values
Creates a PowerAnnotator with the following attributes:

WindowType window type
Scale scale
OutputRelation output relation
WindowLength window length
Converter audio file format converter
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PreEmph preemph coefficient
FrameLength frame length in ms

smooth (SMOOTH)
Description: Smoothes f0 values with smoothf0
Creates a F0SmoothAnnotator with the following attributes:

InputRelation input relation
Parameters additional command line parameters
OutputRelation output relation
Split split contour on pauses
PowerRelation input relation for power values
PowerParameters power command line parameters
MinimumF0 minimum allowed f0 value
Executable pathname of SmoothF0 executable
MaximumF0 maximum allowed f0 value

syllable (SYLLABLE)
Description: Corrects syllable boundaries
Creates a SyllableMergeAnnotator with the following attributes:

LexiconFile lexicon file name
Plosives recognized plosives
LocalLexiconFile additional lexicon file name
SplitPlosives split plosives in the dictionary into pause and burst
PhoneSet phone set for the label file

prosodic (PROSODIC)
Description: Imposes prosodic structures
Creates a ProsodicMergeAnnotator with the following attributes:

Stress Festival stress feature name
Format prosodic file format: tcstar
SplitStructure Split utterance in imposed phrases
PBreak Festival phrase break feature name
BLevel Festival break level feature name
File file name

vad (VAD)
Description: Splits a wave file into silence and utterances
Creates a VadAnnotator with the following attributes:

NoiseAdaptionDelta maximum delta from nominal noise threshold
for noise threshold adaption (dB)
InputRelation input relation
OutputRelation output relation
MinimalUtteranceDuration minimal utterance duration (s)
MinimalBreakDuration minimal pause duration (s)
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NominalNoiseLevel start noise threshold (dB)
NoiseFloor minimum noise threshold for threshold adaption (dB)
UtteranceDelta minimum delta from threshold that leads to state
change (dB)
NominalSignalLevel start signal threshold (dB)
NoiseAdaptionConstant weight of old noise threshold in noise
threshold adaption per frame (0..1)
SignalAdaptionDelta maximum delta from nominal signal thresh-
old for signal threshold adaption (dB)
SignalAdaptionConstant weight of old signal threshold in signal
threshold adaption per frame (0..1)

relation (RELATION)
Description: Moves and deletes relations
Creates a RelationAnnotator with the following attributes:

Relations relation names e.g. delete=;move=newname

F.3. Helper Modules

F.3.1. ConversionProviders.Type

sox (SOX)
Description: SoX Sound eXchange executable by Chris Bagwell
Creates a SoxConversionProvider with the following attributes:

Executable pathname of Sox executable
ecasound (ECASOUND)

Description: Ecasound package by Kai Vehmanen
Creates an EcasoundConversionProvider with the following at-
tributes:

Executable pathname of Ecasound executable

F.3.2. PhoneFiles.Type

mbrola (MBROLA)
Description: Mbrola synthesizer phone file
Creates a MbrolaPhoneFile

wavesurfer (WAVESURFER)
Description: Wavesurfer segment label file
Creates a WavesurferPhoneFile

xwaves (XWAVES)
Description: XWaves label file with labels at the beginning of a segment
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Creates a XWavesPhoneFile
xwaves-late (XWAVES_LATE)

Description: XWaves label file with labels at the end of a segment
Creates a XWavesLatePhoneFile

festival (FESTIVAL)
Description: Edinburgh Speech tools utterance format used with Festival
Creates a FestivalPhoneFile

xml (FESTIVAL_XML)
Description: XML utterance format
Creates a FestivalXmlPhoneFile

phonetic (TC_STAR_PHONETIC)
Description: TC-Star phonetic format (write only)
Creates a PhoneticPhoneFile

prosodic (TC_STAR_PROSODIC)
Description: TC-Star prosodic format (write only)
Creates a ProsodicPhoneFile

pitch (PITCH)
Description: Text pitchmark file format
Creates a TextPitchFile

lexicon (LEXICON)
Description: Lexicon file format
Creates a LexiconFile

F.3.3. Text.Type

latin1 (LATIN1)
Description: Latin1 text

latin1-strip (LATIN1_STRIP)
Description: Latin1 text, non-ascii stripped

siemens (SIEMENS)
Description: Siemens phrase format

utf8 (UTF8)
Description: UTF-8 text

utf8-strip (UTF8_STRIP)
Description: UTF-8 text, non-ascii stripped

F.3.4. Window.Type

rect (RECT)
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hanning (HANNING)
bartlett (BARTLETT)
blackman (BLACKMAN)
hamming (HAMMING)

F.3.5. PhoneTransformer.Name

BritishMRPA (BRITISH_MRPA)
Description: British English Festival (MRPA)

BritishMbrola (BRITISH_MBROLA)
Description: British English Mbrola (SAMPA)

BritishDress (BRITISH_DRESS)
Description: British English DRESS (modified SAMPA)

AmericanMRPA (AMERICAN_MRPA)
Description: American English Festival (MRPA)

AmericanMbrola (AMERICAN_MBROLA)
Description: American English Mbrola (SAMPA)

GermanMbrola (GERMAN_MBROLA)
Description: German Mbrola (SAMPA)

F.4. Evolutionary Optimization

F.4.1. AbstractBooleanGene.BooleanCombiners

average (AVERAGE)
Description: Averages parents’ gene values
Creates an AverageGeneCombiner

F.4.2. AbstractBooleanGene.BooleanInitializers

fixed (FIXED)
Description: Fixed value
Creates a FixedGeneInitializer with the following attributes:

Value value
random (RANDOM)

Description: Random selection
Creates a RandomGeneInitializer
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F.4.3. AbstractBooleanGene.BooleanMutators

random (RANDOM)
Description: Random mutation
Creates a RandomGeneMutator with the following attributes:

RelativeRange probability for state change

F.4.4. AbstractDoubleGene.DoubleCombiners

average (AVERAGE)
Description: Averages parents’ values
Creates an AverageGeneCombiner

F.4.5. AbstractDoubleGene.DoubleInitializers

fixed (FIXED)
Description: Fixed value
Creates a FixedGeneInitializer with the following attributes:

Value value
random (RANDOM)

Description: Random selection
Creates a RandomGeneInitializer

F.4.6. AbstractDoubleGene.DoubleMutators

gaussian (GAUSSIAN)
Description: Gaussian distributed random mutation
Creates a GaussianGeneMutator with the following attributes:

StandardDeviation relative standard deviation
random (RANDOM)

Description: Random mutation
Creates a RandomGeneMutator with the following attributes:

RelativeRange relative range

F.5. Neural Networks

F.5.1. FieldExtractors.Type

duration (DURATION)
Description: Phone durations
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Creates a DurFieldExtractor with the following attributes:
Fields field names
Settings settings file name suffix, empty for automatic

fuji (FUJI)
Description: Fujisaki parameters
Creates a FujiFieldExtractor with the following attributes:

Fields field names
Settings settings file name suffix, empty for automatic

double (DOUBLE)
Description: Double feature
Creates a DoubleFieldExtractor with the following attributes:

Feature feature name
Fields field names
Settings settings file name suffix, empty for automatic

int (INT)
Description: Integer feature
Creates an IntFieldExtractor with the following attributes:

Feature feature name
Fields field names
Settings settings file name suffix, empty for automatic

string (STRING)
Description: String feature enumeration
Creates a StringFieldExtractor with the following attributes:

Feature feature name
Fields field names
Settings settings file name suffix, empty for automatic

syllables (SYLS)
Description: Number of syllables
Creates a SyllablesFieldExtractor with the following attributes:

Fields field names
Settings settings file name suffix, empty for automatic

time (TIME)
Description: Word start and end time
Creates a TimeFieldExtractor with the following attributes:

Fields field names
Settings settings file name suffix, empty for automatic

index (INDEX)
Description: Positional indices

123



F. Modules and Attributes

Creates an IndexFieldExtractor with the following attributes:
Fields field names
Settings settings file name suffix, empty for automatic

series (SERIES)
Description: Time series
Creates a TimeSeriesFieldExtractor with the following attributes:

Feature feature name
Relation relation name
Fields field names
Logarithmic Use logarithmic scale
Settings settings file name suffix, empty for automatic

break (BREAK)
Description: Phrase breaks
Creates a BreakFieldExtractor with the following attributes:

Feature feature name
Fields field names
Settings settings file name suffix, empty for automatic
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The CD-ROM contains all generated and used source code as well as the data
produced during evaluation. For easy access, the thesis itself and all literature
from the bibliography available in electronic form is also included.

G.1. Directory Structure
/Data Data generated during the evaluation of the framework. The original

wave files had to be ommited to save space.
/Source Code Source code used or developed during the thesis.

/Wavesurfer Plugin Tcl/Tk Plugin to view and modify pitchmarks with
Wavesurfer. Additionally, some wrapper scripts and a Wavesurfer
configuration file is provided to act as a drop-in replacement for the
korr script.

/Framework Framework root directory.
/Classes Java framework classes, see next section for details.
/Root Configuration files, external lexicons etc. that are needed

during runtime.
/External Programs Source code for external programs that were used

for this thesis if available. If some of the programs had patches
applied to work correctly, these are also included.

/Binary Only Programs used that were only available in binary form. The
windows executables can be executed on Linux operating systems
with the Wine Windows API emulator.
/Aligner Stoeber Phoneme aligner of the University of Bonn.
/Smooth F0 Contour Smoothes f0 contours with splines and linear

interpolation.
/Fujisaki Parameter Extraction Extracts Fujisaki parameters from

f0 contours.
/Scripts Batch conversion script examples.

/Report Electronic version of the thesis. All graphics and the LATEX sources to
regenerate the PDF version are included. The bibliography of this version
links to an electronic version of the literature if available.

/Paper SpeechProsody 2006 Paper sources for the Speech Prosody 2006 con-
ference that details some of the prosodic prediction results.

/Literature Used literature if available in electronic form.
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G.2. Java Package Structure
The framework consists of some external Java packages and additional 60 000
lines of documented Java source code which are split into the following packages:

mh21 Class root of the annotation framework. Contains some classes that did
not fit anywhere else.

.prosodic Core framework classes and package root for the aligment and
annotation classes.
.evolution Evolutionary optimization of e. g. Fujisaki parameters.
.phonefile Classes for loading and storing of annotation information.
.conversion Wave file conversion.
.aligner Forced phoneme alignment.
.processor Aligner preprocessing, e. g. plosive splitting.
.annotator Annotation classes.
.evaluation Basic result evaluation.
.synthesizer Speech synthesis support.
.gpc Grapheme phoneme conversion.
.nn Neural network optimization of word-level features.

.progs Supported command line executables.

.soundproc Wave file reading and writing as well as various signal pro-
cessing operations.

.utterance Festival utterance, relation and content classes as well as some
utility functions.

.evolution Evolutionary optimization classes. Several interfaces are de-
fined to provide the core functionality. The implementation is limited
to the most common optimization methods.

.nn High-level interface to MFNs that allows to create, load, train and
evaluate such networks.
.core Core classes for the management of neural networks represent-

ing all necessary parts like neurons, links, patterns etc.
.options High-Level command line option parsing that generates help

pages and automatically parses provided options.
.attributable Interfaces for command line accessible attributes and an

implementation using reflection.
.collection Collection interfaces and classes for tree-like structures.
.texdoclet Generation of LATEX documentation from Java source code.
.related Unsupported executable classes for test programs and quick cal-

culations.
.tests Over 110 tests to prevent regressions.

laiptts LaipTTS speech synthesis for German.
org.apache.commons Apache Commons utility functions.
gnu.getopt GNU getopt command line option parsing.
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